Original entry on oeis.org
1, 2, 11, 14, 19, 131, 270, 299, 1906, 6551, 8448, 110476, 120698, 274190, 360430
Offset: 1
-
odd[n_]:=If[OddQ[n],n,n+1];a={};amax=0;n=1;While[Length[a]<25,lst={}; k=2n/(2n+1); s1=0; While[k>0,s2=odd[Ceiling[1/k]]; If[s2==s1,s2+=2]; AppendTo[lst, s2]; k=k-1/s2; s1=s2]; len=Length[lst];If[len>amax,amax=len;a=AppendTo[a,n]]; n++];a
A287434
Largest denominator used in the Egyptian fraction representation of 1-1/(2n+1) by the odd greedy expansion algorithm, without repeats.
Original entry on oeis.org
45, 24885, 315, 45, 340725, 196365, 15, 10965, 196365, 10465, 1652115781968795, 340725, 25245, 3976914451825623169001741646052688658398236092769201887156089117865, 15345, 13695, 6232413355673505, 79365
Offset: 1
For n = 2, 1-1/(2n+1) = 4/5 = 1/3 + 1/5 + 1/7 + 1/9 + 1/79 + 1/24885, thus a(2) = 24885.
-
odd[n_]:=If[OddQ[n],n,n+1];a={};For[n=0,n<100,n++;dlast=0;k=2n/(2n+1);s1=0; While[k>0,s2=odd[Ceiling[1/k]]; If[s2==s1,s2+=2]; dlast=s2; k=k-1/s2; s1=s2];a=AppendTo[a,dlast]];a
Showing 1-2 of 2 results.
Comments