This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A286724 #82 Aug 03 2025 00:06:04 %S A286724 1,2,1,8,8,1,48,72,18,1,384,768,288,32,1,3840,9600,4800,800,50,1, %T A286724 46080,138240,86400,19200,1800,72,1,645120,2257920,1693440,470400, %U A286724 58800,3528,98,1,10321920,41287680,36126720,12042240,1881600,150528,6272,128,1,185794560,836075520,836075520,325140480,60963840,6096384,338688,10368,162,1,3715891200,18579456000,20901888000,9289728000,2032128000,243855360,16934400,691200,16200,200,1 %N A286724 Triangle read by rows. A generalization of unsigned Lah numbers, called L[2,1]. %C A286724 These generalized unsigned Lah numbers are the instance L[2,1] of the Sheffer triangles called L[d,a], with integers d >= 1 and integers 0 <= a < d with gcd(d,a) = 1. The standard unsigned Lah numbers are L[1,0] = A271703. %C A286724 The Sheffer structure of L[d,a] is ((1 - d*t)^(-2*a/d), t/(1 - d*t)). This follows from the defining property %C A286724 risefac[d,a](x, n) = Sum_{m=0..n} L[d,a](n, m)*fallfac[d,a](x, m), where risefac[d,a](x, n):= Product_{0..n-1} (x + (a+d*j)) for n >= 1 and risefac[d,a](x, 0) := 1, and fallfac[d,a](x, n):= Product_{0..n-1} (x - (a+d*j)) = for n >= 1 and fallfac[d,a](x, 0) := 1. Such rising and falling factorials arise in the generalization of Stirling numbers of both kinds S2[d,a] and S1[d,a]. See the _Peter Bala_ link under A143395 for these falling factorials called there [t;a,b,c]_n with t=x, a=d, b=0, c=a. %C A286724 In matrix notation: L[d,a] = S1phat[d,a].S2hat[d,a] with the unsigned scaled Stirling1 and the scaled Stirling2 generalizations with Sheffer structures S1phat[d,a] = ((1 - d*t)^(-a/d), -(1/d)*(log(1 - d*t))) and S2hat[d,a] = (exp(a*t), (1/d)*(exp(d*t) - 1). See, e.g., S1phat[2,1] = A028338 and S2hat[2,1] = A039755. %C A286724 The a- and z-sequences for these Sheffer matrices have e.g.f.s 1 + d*t and ((1 + d*t)/t)*(1 - (1 + d*t)^(-2*a/d)), respectively. See a W. Lang link under A006232 for these types of sequences. %C A286724 E.g.f. of row polynomials R[d,a](n, x) := Sum_{m=0..n} L[d,a](n, m)*x^m %C A286724 (1 - d*x)^(-2*a/d)*exp(t*x/(1 - d*x)) (this is the e.g.f. for the triangle). %C A286724 E.g.f. of column m: (1 - d*t)^(-2*a/d)*(t/(1 - d*t))^m/m, m >= 0. %C A286724 Meixner type identity for (monic) row polynomials: (D_x/(1 + d*D_x)) * R[d,a](n, x) = n*R[d,a](n-1, x), n >= 1, with R[d,a](0, x) = 1. The series in the differentiations D_x = d/dx terminates. %C A286724 General Sheffer recurrence for row polynomials (see the Roman reference, p. 50, Corollary 3.7.2, rewritten for the present Sheffer notation): %C A286724 R[d,a](n, x) = [(2*a+x)*1 + 2*d*(a + x)*D_x + d^2*x*(D_x)^2]*R[d,a](n-1, x), n >= 1, with R[d,a](0, x) = 1. %C A286724 The inverse matrix L^(-1)[d,a] is Sheffer (g[d,a](-t), -f[d,a](-t)) with L[d,a] Sheffer (g[d,a](t), f[d,a](t)) from above. This means (see the column e.g.f. of Sheffer matrices) that L^(-1)[d,a](n, m) = (-1)^(n-m)*L[d,a](n, m). Therefore, the recurrence relations can easily be rewritten for L^(-1)[d,a] by replacing a -> -a and d -> -d. %C A286724 fallfac[d,a](x, n) = Sum_{m=0..n} L^(-1)[d,a](n, m)*risefac[d,a](x, m), n >= 0. %C A286724 From _Wolfdieter Lang_, Aug 12 2017: (Start) %C A286724 The Sheffer row polynomials R[d,a](n, x) belong to the Boas-Buck class and satisfy therefore the Boas-Buck identity (see the reference, and we use the notation of Rainville, Theorem 50, p. 141, adapted to an exponential generating function) (E_x - n*1)*R[d,a](n, x) = - n*(2*a*1 + d*E_x) * Sum_{k=0..n-1} d^k*R(d,a;n-1-k,x)/(n-1-k)!, with E_x = x*d/dx (Euler operator). %C A286724 This implies a recurrence for the sequence of column m: L[d,a](n, m) = (n!*(2*a + d*m)/(n-m))*Sum_{p=0..n-1-m} d^p*L[d,a](n-1-p, m)/(n-1-p)!, for n > m>=0, and input L[d,a](m, m) = 1. For the present [d,a] = [2,1] instance see the formula and example sections. (End) %C A286724 From _Wolfdieter Lang_, Sep 14 2017: (Start) %C A286724 The diagonal sequences are 2^D*D!*(binomial(m+D, m))^2, m >= 0, for D >= 0 (main diagonal D = 0). From the o.g.f.s obtained via Lagrange's theorem. See the second W. Lang link below for the general Sheffer case. %C A286724 The o.g.f. of the diagonal D sequence is 2^D*D!*Sum_{m=0..D} A008459(D, m)*x^m /(1- x)^(2*D + 1), D >= 0. (End) %C A286724 It appears that this is also the matrix square of unsigned triangle of coefficients of Laguerre polynomials n!*L_n(x), abs(A021009(n, k)). - _Ali Pourzand_, Mar 10 2025 [This observation is correct. - _Peter Luschny_, Mar 10 2025] %D A286724 Ralph P. Boas, jr. and R. Creighton Buck, Polynomial Expansions of analytic functions, Springer, 1958, pp. 17 - 21, (last sign in eq. (6.11) should be -). %D A286724 Earl D. Rainville, Special Functions, The Macmillan Company, New York, 1960, ch. 8, sect. 76, 140 - 146. %D A286724 Steven Roman, The Umbral Calculus, Academic press, Orlando, London, 1984, p. 50. %H A286724 Peter Bala, <a href="/A048993/a048993.pdf">The white diamond product of power series</a> %H A286724 Wolfdieter Lang, <a href="http://arXiv.org/abs/1707.04451">On Sums of Powers of Arithmetic Progressions, and Generalized Stirling, Eulerian and Bernoulli Numbers</a>, arXiv:math/1707.04451 [math.NT], July 2017. %H A286724 Wolfdieter Lang, <a href="http://arxiv.org/abs/1708.01421">On Generating functions of Diagonal Sequences of Sheffer and Riordan Number Triangles</a>, arXiv:1708.01421 [math.NT], August 2017. %H A286724 Emanuele Munarini, <a href="https://doi.org/10.2298/AADM180226017M">Combinatorial identities involving the central coefficients of a Sheffer matrix</a>, Applicable Analysis and Discrete Mathematics (2019) Vol. 13, 495-517. %F A286724 T(n, m) = L[2,1](n, m) = Sum_{k=m..n} A028338(n, k)*A039755(k, m). %F A286724 Three term recurrence for column elements with m >= 1: T(n, m) = (n/m)*T(n-1, m-1) + 2*n*T(n-1, m) with T(n, m) = 0 for n < m and the column m = 0 is T(n, 0) = (2*n)!! = n*2^n = A000165(n). (From the a- and z-sequences {1, 2, repeat(0)} and {2, repeat(0)}, respectively.) %F A286724 Four term recurrence: T(n, m) = T(n-1, m-1) + 2*(2*n-1)*T(n-1, m) - 4*(n-1)^2*T(n-2, m), n >= m >= 0, with T(0, 0) = 1, T(-1, m) = 0, T(n, -1) = 0 and T(n, m) = 0 if n < m. %F A286724 E.g.f. of row polynomials R(n, x) = R[2,1](n, x) (i.e., e.g.f. of the triangle): (1/(1-2*t))*exp(x*t/(1-2*t)). %F A286724 E.g.f. of column m sequences: (t^m/(1-2*t)^(m+1))/m!, m >= 0. %F A286724 Meixner type identity: Sum_{k=0..n-1} (-1)^k*2^k*(D_x)^(k+1)*R(n, x) = n*R(n-1, x), n >= 1, with R(0, x) = 1 and D_x = d/dx. %F A286724 Sheffer recurrence: R(n, x) = [(2 + x)*1 + 4*(1 + x)*D_x + 4*x*(D_x)^2]*R(n-1, x), n >= 1, and R(0, x) = 1. %F A286724 Boas-Buck recurrence for column m (see a comment above): T(n, m) = (2*n!*(1 + m)/(n-1))*Sum_{p=0..n-1-m} 2^p*T(n-1-p, m)/(n-1-p)!, for n > m >= 0, and input T(m, m) = 1. - _Wolfdieter Lang_, Aug 12 2017 %F A286724 Explicit form (from the diagonal sequences with the o.g.f.s given as a comment above): T(n, m) = 2^(n-m)*(n-m)!*(binomial(n, n-m))^2 for n >= m >= 0. - _Wolfdieter Lang_, Sep 23 2017 %F A286724 Let R(n,x) denote the n-th row polynomial. Then x^n*R(n,x) = x^n o x^n, where o denotes the deformed Hadamard product of power series defined in Bala, Section 3.1. - _Peter Bala_, Jan 18 2018 %e A286724 The triangle T(n, m) begins: %e A286724 n\m 0 1 2 3 4 5 6 7 8 9 %e A286724 0: 1 %e A286724 1: 2 1 %e A286724 2: 8 8 1 %e A286724 3: 48 72 18 1 %e A286724 4: 384 768 288 32 1 %e A286724 5: 3840 9600 4800 800 50 1 %e A286724 6: 46080 138240 86400 19200 1800 72 1 %e A286724 7: 645120 2257920 1693440 470400 58800 3528 98 1 %e A286724 8: 10321920 41287680 36126720 12042240 1881600 150528 6272 128 1 %e A286724 9: 185794560 836075520 836075520 325140480 60963840 6096384 338688 10368 162 1 %e A286724 ... %e A286724 From _Wolfdieter Lang_, Aug 12 2017: (Start) %e A286724 Recurrence for column elements with m >= 1, and input column m = 0: T(3, 2) = (3/2)*T(2, 1) + 2*3*T(2, 2) = (3/2)*8 + 6 = 18. %e A286724 Four term recurrence: T(3, 2) = T(2, 1) + 2*5*T(2, 2) - 4*2^2*T(1, 2) = 8 + 10 + 0 = 18. %e A286724 Meixner type identity, n=2: 2*R(1, x) = (D_x - 2*(D_x)^2)*R(2, x), 2*(2 + x) = (8 + 2*x) - 2*2. %e A286724 Sheffer recurrence: R(2, x) = (2 + x)*(2 + x) + 4*(1 + x)*1 + 0 = 8 + 8*x + x^2. %e A286724 Boas-Buck recurrence for column m = 2 and n = 4: T(4, 2) = (2*4!*3/2)*(1*T(3, 2)/3! + 2*T(2, 2)/2!) = 4!*3*(18/3! + 1) = 288. (End) %e A286724 Diagonal sequence D = 1: o.g.f. 2*1!*(1 + 1*x)/(1- x)^3 generating %e A286724 {2*(binomial(m+1, m))^2}_{m >= 0} = {2, 8, 18, 32, ...}. - _Wolfdieter Lang_, Sep 14 2017 %p A286724 T := (n, k) -> ifelse(n < k, 0, ifelse(k = 0, n!*2^n, (n/k)*T(n-1, k-1) + 2*n*T(n-1, k))): seq(seq(T(n, k), k = 0..n), n = 0..10); # _Peter Luschny_, Mar 10 2025 %t A286724 T[ n_, k_] := Coefficient[ Integrate[ Exp[-x^2 - y x] HermiteH[n, x]^2, {x, -Infinity, Infinity}] / (Sqrt[Pi] Exp[y^2 / 4]), y, 2 k]; (* _Michael Somos_, Sep 27 2017 *) %o A286724 (SageMath) # Using the function A021009_triangle, displays as a matrix. Following the observation of Ali Pourzand. %o A286724 print(A021009_triangle(9)^2) # _Peter Luschny_, Mar 10 2025 %Y A286724 Cf. A006232, A025167, A028338, A039755, A143395, A271703, A021009. %Y A286724 Column sequences (no leading zeros): A000165, A014479, A286725. %Y A286724 Diagonal sequences: A000012, 2*A000290(m+1), 8*A000537(n+1), 48*A001249, 384*A288876. - _Wolfdieter Lang_, Sep 14 2017 %Y A286724 Row sums are A025167. - _Michael Somos_, Sep 27 2017 %K A286724 nonn,tabl,easy %O A286724 0,2 %A A286724 _Wolfdieter Lang_, Jun 16 2017