A286742 a(n) minimizes (over the integers) the absolute difference between Pi and x(n) + 1/a(n), where x(n) is Pi truncated at the n-th decimal digit.
7, 24, 628, 1687, 10793, 376848, 1530012, 18660270, 278567575, 1695509434, 11136696004, 102111268282, 1260654956982, 10725187563686, 308788493220130, 4193528956200936, 25999253094360135, 118166387818704585, 2161492060929047665, 15963377896404315144
Offset: 1
Examples
3 + 1/7 is closest to Pi in absolute value among numbers of the form 3 + 1/k (k an integer); 3.1 + 1/24 is closest to Pi in absolute value among numbers of the form 3.1 + 1/k (k an integer); 3.14 + 1/628 is closest to Pi in absolute value among numbers of the form 3.14 + 1/k (k an integer).
Crossrefs
Cf. A074783.
Programs
-
Mathematica
Table[ truncpi = Floor[10^(n - 1)*Pi]/10^(n - 1); SortBy[ {Floor[1/(Pi - truncpi)], Ceiling[1/(Pi - truncpi)]}, N[Abs[Pi - (truncpi + 1/#)]] & ][[1]], {n, 1, 20}] (* first 20 terms *)