cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286757 Number of labeled connected rooted trivalent graphs with 2n nodes.

This page as a plain text file.
%I A286757 #11 Jan 04 2021 23:04:05
%S A286757 0,4,120,33600,18471600,18386121600,30231607606200,76388992266787200,
%T A286757 281063897503929540000,1444102677105174358272000,
%U A286757 10020068498645397815029407000,91355440119583548608158042584000,1069762020017605579789451640683370000
%N A286757 Number of labeled connected rooted trivalent graphs with 2n nodes.
%C A286757 A006607 gives values matching Table 1 (p. 342) of Wormald. However, the values in the table for n > 4 do not appear to match formulas given for generating the table.
%D A286757 R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1977.
%H A286757 N. C. Wormald, <a href="http://dx.doi.org/10.1007/BFb0062550">Triangles in labeled cubic graphs</a>, pp. 337-345 of Combinatorial Mathematics (Canberra, 1977), Lect. Notes Math. 686, 1978.
%F A286757 Let b(0)=b(1)=0, b(n) = 2*binomial(2*n, 2)*b(n-1) + 12*binomial(2*n, 4)*b(n-2) + 6*binomial(2*n, 3)*A002829(n-1) + 60*binomial(2*n, 5)*A002829(n-2) + 1260*binomial(2*n, 7)*A002829(n-3). a(n)=b(n) except a(2)=4.
%F A286757 Let Q(x) be an e.g.f. for A002829: Q(x) = 1 + (1/4!)*x^4 + (70/6!)*x^6 + (19355/8!)*x^8 + ...; then A(x), the e.g.f. for this sequence, satisfies (2 - 2*x^2 - x^4) * (A(x) - (1/6)*x^4) = (2*x^3 + x^5 + (1/2)*x^7) * Q'(x) where Q'(x) is the derivative of Q(x) with respect to x.
%Y A286757 Cf. A002829, A006607.
%K A286757 nonn
%O A286757 1,2
%A A286757 _Sean A. Irvine_, May 13 2017