cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286763 Numbers that appear in A195441 at least once for two consecutive indices.

This page as a plain text file.
%I A286763 #26 Sep 10 2024 08:16:06
%S A286763 1,30,210,330,2310,3990,6090,14790,43890,66990,82110,125970,144210,
%T A286763 181830,881790,1009470,1067430,1217370,2284590,2381190,17687670,
%U A286763 18888870,26265030,35068110,39544890,47763870,115223790,127652070,406816410,497668710,741110370,1024748670
%N A286763 Numbers that appear in A195441 at least once for two consecutive indices.
%C A286763 The sequence is infinite; see Cor. 3 in "The denominators of power sums of arithmetic progressions". - _Bernd C. Kellner_ and _Jonathan Sondow_, May 24 2017
%H A286763 Bernd C. Kellner, <a href="https://doi.org/10.1016/j.jnt.2017.03.020">On a product of certain primes</a>, J. Number Theory 179 (2017), 126-141; arXiv:<a href="https://arxiv.org/abs/1705.04303">1705.04303</a> [math.NT], 2017.
%H A286763 Bernd C. Kellner and Jonathan Sondow, <a href="https://doi.org/10.4169/amer.math.monthly.124.8.695">Power-Sum Denominators</a>, Amer. Math. Monthly 124 (2017), 695-709; arXiv:<a href="https://arxiv.org/abs/1705.03857">1705.03857</a> [math.NT], 2017.
%H A286763 Bernd C. Kellner and Jonathan Sondow, <a href="https://doi.org/10.5281/zenodo.10682734">The denominators of power sums of arithmetic progressions</a>, Integers 18 (2018), Article #A95, 17 pp.; arXiv:<a href="https://arxiv.org/abs/1705.05331">1705.05331</a> [math.NT], 2017.
%e A286763 A195441(21) = A195441(22) = 30, so 30 is in the sequence. - _Jonathan Sondow_, Dec 11 2018
%t A286763 Take[#, 32] &@ Union@ SequenceCases[ Table[ Denominator[ Together[ (BernoulliB[n + 1, x] - BernoulliB[n + 1])]], {n, 0, 2000}], w_ /; And[SameQ @@ w, Length@ w >= 2]][[All, 1]] (* _Michael De Vlieger_, Sep 22 2017, after _Jonathan Sondow_ at A195441 *)
%o A286763 (Julia)
%o A286763 function A286763_search()
%o A286763     A = fmpz[]; a = fmpz(0)
%o A286763     for n in 0:10000
%o A286763         u = A195441(n)
%o A286763         a == u && push!(A, a)
%o A286763         a = u
%o A286763     end
%o A286763     S = sort([a for a in Set(A)])
%o A286763 S[1:32] end
%o A286763 println(A286763_search())
%Y A286763 Cf. A195441, A286516, A286762.
%K A286763 nonn
%O A286763 1,2
%A A286763 _Peter Luschny_, May 14 2017