This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A286763 #26 Sep 10 2024 08:16:06 %S A286763 1,30,210,330,2310,3990,6090,14790,43890,66990,82110,125970,144210, %T A286763 181830,881790,1009470,1067430,1217370,2284590,2381190,17687670, %U A286763 18888870,26265030,35068110,39544890,47763870,115223790,127652070,406816410,497668710,741110370,1024748670 %N A286763 Numbers that appear in A195441 at least once for two consecutive indices. %C A286763 The sequence is infinite; see Cor. 3 in "The denominators of power sums of arithmetic progressions". - _Bernd C. Kellner_ and _Jonathan Sondow_, May 24 2017 %H A286763 Bernd C. Kellner, <a href="https://doi.org/10.1016/j.jnt.2017.03.020">On a product of certain primes</a>, J. Number Theory 179 (2017), 126-141; arXiv:<a href="https://arxiv.org/abs/1705.04303">1705.04303</a> [math.NT], 2017. %H A286763 Bernd C. Kellner and Jonathan Sondow, <a href="https://doi.org/10.4169/amer.math.monthly.124.8.695">Power-Sum Denominators</a>, Amer. Math. Monthly 124 (2017), 695-709; arXiv:<a href="https://arxiv.org/abs/1705.03857">1705.03857</a> [math.NT], 2017. %H A286763 Bernd C. Kellner and Jonathan Sondow, <a href="https://doi.org/10.5281/zenodo.10682734">The denominators of power sums of arithmetic progressions</a>, Integers 18 (2018), Article #A95, 17 pp.; arXiv:<a href="https://arxiv.org/abs/1705.05331">1705.05331</a> [math.NT], 2017. %e A286763 A195441(21) = A195441(22) = 30, so 30 is in the sequence. - _Jonathan Sondow_, Dec 11 2018 %t A286763 Take[#, 32] &@ Union@ SequenceCases[ Table[ Denominator[ Together[ (BernoulliB[n + 1, x] - BernoulliB[n + 1])]], {n, 0, 2000}], w_ /; And[SameQ @@ w, Length@ w >= 2]][[All, 1]] (* _Michael De Vlieger_, Sep 22 2017, after _Jonathan Sondow_ at A195441 *) %o A286763 (Julia) %o A286763 function A286763_search() %o A286763 A = fmpz[]; a = fmpz(0) %o A286763 for n in 0:10000 %o A286763 u = A195441(n) %o A286763 a == u && push!(A, a) %o A286763 a = u %o A286763 end %o A286763 S = sort([a for a in Set(A)]) %o A286763 S[1:32] end %o A286763 println(A286763_search()) %Y A286763 Cf. A195441, A286516, A286762. %K A286763 nonn %O A286763 1,2 %A A286763 _Peter Luschny_, May 14 2017