cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286764 Total number of nodes summed over all lattice paths from (0,0) to (n,n) that do not go below the x-axis or above the diagonal x=y and consist of steps D=(1,-1), H=(1,0) and S=(0,1).

This page as a plain text file.
%I A286764 #10 Jun 28 2022 03:23:39
%S A286764 1,3,16,109,855,7298,65838,617118,5946781,58506642,584894463,
%T A286764 5921596628,60565217546,624644829720,6487216108058,67767838847144,
%U A286764 711463437534474,7501409431304796,79386836213817417,842882477863610604,8974911258934880498,95806877080558096428
%N A286764 Total number of nodes summed over all lattice paths from (0,0) to (n,n) that do not go below the x-axis or above the diagonal x=y and consist of steps D=(1,-1), H=(1,0) and S=(0,1).
%H A286764 Alois P. Heinz, <a href="/A286764/b286764.txt">Table of n, a(n) for n = 0..960</a>
%F A286764 a(n) ~ c * phi^(5*n) / sqrt(n), where phi = A001622 is the golden ratio and c = 0.036755631845424682385214848270310481743236419858524834059514156934711202... - _Vaclav Kotesovec_, Sep 11 2021
%p A286764 b:= proc(x, y) option remember; `if`(y<0 or y>x, 0, `if`(x=0, [1$2],
%p A286764       (p-> p+[0, p[1]])(b(x-1, y)+b(x, y-1)+b(x-1, y+1))))
%p A286764     end:
%p A286764 a:= n-> b(n$2)[2]:
%p A286764 seq(a(n), n=0..30);
%t A286764 b[x_, y_] := b[x, y] = If[y < 0 || y > x, 0, If[x == 0, {1, 1}, Function[
%t A286764      p, p + {0, p[[1]]}][b[x - 1, y] + b[x, y - 1] + b[x - 1, y + 1]]]];
%t A286764 a[n_] := b[n, n][[2]];
%t A286764 Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Jun 28 2022, after _Alois P. Heinz_ *)
%Y A286764 Cf. A001622, A224776.
%K A286764 nonn
%O A286764 0,2
%A A286764 _Alois P. Heinz_, May 14 2017