cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286770 Binary representation of the diagonal from the corner to the origin of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 221", based on the 5-celled von Neumann neighborhood.

This page as a plain text file.
%I A286770 #13 Feb 16 2025 08:33:45
%S A286770 1,10,0,1110,1,111110,1,11111110,1,1111111110,1,111111111110,1,
%T A286770 11111111111110,1,1111111111111110,1,111111111111111110,1,
%U A286770 11111111111111111110,1,1111111111111111111110,1,111111111111111111111110,1,11111111111111111111111110,1
%N A286770 Binary representation of the diagonal from the corner to the origin of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 221", based on the 5-celled von Neumann neighborhood.
%C A286770 Initialized with a single black (ON) cell at stage zero.
%C A286770  a(n) = A280410(n) for n >= 3 ? - _Michel Marcus_, May 17 2017
%D A286770 S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
%H A286770 Robert Price, <a href="/A286770/b286770.txt">Table of n, a(n) for n = 0..126</a>
%H A286770 Robert Price, <a href="/A286770/a286770.tmp.txt">Diagrams of first 20 stages</a>
%H A286770 N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015
%H A286770 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H A286770 S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>
%H A286770 Wolfram Research, <a href="http://atlas.wolfram.com/">Wolfram Atlas of Simple Programs</a>
%H A286770 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H A286770 <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a>
%H A286770 <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%F A286770 Conjectures from _Colin Barker_, May 14 2017: (Start)
%F A286770 G.f.: (1 + 10*x - 101*x^2 + 100*x^3 + 101*x^4 - 100*x^6) / ((1 - x)*(1 + x)*(1 - 10*x)*(1 + 10*x)).
%F A286770 a(n) = 1 for n>2 and even.
%F A286770 a(n) = 10*(10^n - 1)/9 for n>2 and odd.
%F A286770 a(n) = 101*a(n-2) - 100*a(n-4) for n>4.
%F A286770 (End)
%t A286770 CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
%t A286770 code = 221; stages = 128;
%t A286770 rule = IntegerDigits[code, 2, 10];
%t A286770 g = 2 * stages + 1; (* Maximum size of grid *)
%t A286770 a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
%t A286770 ca = a;
%t A286770 ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
%t A286770 PrependTo[ca, a];
%t A286770 (* Trim full grid to reflect growth by one cell at each stage *)
%t A286770 k = (Length[ca[[1]]] + 1)/2;
%t A286770 ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
%t A286770 Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]
%Y A286770 Cf. A286771, A286772, A286773, A280410.
%K A286770 nonn,easy
%O A286770 0,2
%A A286770 _Robert Price_, May 14 2017