This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A286770 #13 Feb 16 2025 08:33:45 %S A286770 1,10,0,1110,1,111110,1,11111110,1,1111111110,1,111111111110,1, %T A286770 11111111111110,1,1111111111111110,1,111111111111111110,1, %U A286770 11111111111111111110,1,1111111111111111111110,1,111111111111111111111110,1,11111111111111111111111110,1 %N A286770 Binary representation of the diagonal from the corner to the origin of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 221", based on the 5-celled von Neumann neighborhood. %C A286770 Initialized with a single black (ON) cell at stage zero. %C A286770 a(n) = A280410(n) for n >= 3 ? - _Michel Marcus_, May 17 2017 %D A286770 S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170. %H A286770 Robert Price, <a href="/A286770/b286770.txt">Table of n, a(n) for n = 0..126</a> %H A286770 Robert Price, <a href="/A286770/a286770.tmp.txt">Diagrams of first 20 stages</a> %H A286770 N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015 %H A286770 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a> %H A286770 S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a> %H A286770 Wolfram Research, <a href="http://atlas.wolfram.com/">Wolfram Atlas of Simple Programs</a> %H A286770 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a> %H A286770 <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a> %H A286770 <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a> %F A286770 Conjectures from _Colin Barker_, May 14 2017: (Start) %F A286770 G.f.: (1 + 10*x - 101*x^2 + 100*x^3 + 101*x^4 - 100*x^6) / ((1 - x)*(1 + x)*(1 - 10*x)*(1 + 10*x)). %F A286770 a(n) = 1 for n>2 and even. %F A286770 a(n) = 10*(10^n - 1)/9 for n>2 and odd. %F A286770 a(n) = 101*a(n-2) - 100*a(n-4) for n>4. %F A286770 (End) %t A286770 CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}]; %t A286770 code = 221; stages = 128; %t A286770 rule = IntegerDigits[code, 2, 10]; %t A286770 g = 2 * stages + 1; (* Maximum size of grid *) %t A286770 a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *) %t A286770 ca = a; %t A286770 ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}]; %t A286770 PrependTo[ca, a]; %t A286770 (* Trim full grid to reflect growth by one cell at each stage *) %t A286770 k = (Length[ca[[1]]] + 1)/2; %t A286770 ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}]; %t A286770 Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}] %Y A286770 Cf. A286771, A286772, A286773, A280410. %K A286770 nonn,easy %O A286770 0,2 %A A286770 _Robert Price_, May 14 2017