cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286772 Decimal representation of the diagonal from the corner to the origin of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 221", based on the 5-celled von Neumann neighborhood.

This page as a plain text file.
%I A286772 #14 Feb 16 2025 08:33:45
%S A286772 1,2,0,14,1,62,1,254,1,1022,1,4094,1,16382,1,65534,1,262142,1,1048574,
%T A286772 1,4194302,1,16777214,1,67108862,1,268435454,1,1073741822,1,
%U A286772 4294967294,1,17179869182,1,68719476734,1,274877906942,1,1099511627774,1,4398046511102,1
%N A286772 Decimal representation of the diagonal from the corner to the origin of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 221", based on the 5-celled von Neumann neighborhood.
%C A286772 Initialized with a single black (ON) cell at stage zero.
%D A286772 S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
%H A286772 Robert Price, <a href="/A286772/b286772.txt">Table of n, a(n) for n = 0..126</a>
%H A286772 Robert Price, <a href="/A286772/a286772.tmp.txt">Diagrams of first 20 stages</a>
%H A286772 N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015
%H A286772 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H A286772 S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>
%H A286772 Wolfram Research, <a href="http://atlas.wolfram.com/">Wolfram Atlas of Simple Programs</a>
%H A286772 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H A286772 <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a>
%H A286772 <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%F A286772 Conjectures from _Colin Barker_, May 14 2017: (Start)
%F A286772 G.f.: (1 + 2*x - 5*x^2 + 4*x^3 + 5*x^4 - 4*x^6) / ((1 - x)*(1 + x)*(1 - 2*x)*(1 + 2*x)).
%F A286772 a(n) = 1 for n>2.
%F A286772 a(n) = 2^(n+1) - 2 for n>2.
%F A286772 a(n) = 5*a(n-2) - 4*a(n-4) for n>4.
%F A286772 (End)
%F A286772 It appears that a(n) = A280412(n) for n >= 3. - _Michel Marcus_, May 20 2017
%t A286772 CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
%t A286772 code = 221; stages = 128;
%t A286772 rule = IntegerDigits[code, 2, 10];
%t A286772 g = 2 * stages + 1; (* Maximum size of grid *)
%t A286772 a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
%t A286772 ca = a;
%t A286772 ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
%t A286772 PrependTo[ca, a];
%t A286772 (* Trim full grid to reflect growth by one cell at each stage *)
%t A286772 k = (Length[ca[[1]]] + 1)/2;
%t A286772 ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
%t A286772 Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]
%Y A286772 Cf. A286770, A286771, A286773.
%K A286772 nonn,easy
%O A286772 0,2
%A A286772 _Robert Price_, May 14 2017