cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286773 Decimal representation of the diagonal from the origin to the corner of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 221", based on the 5-celled von Neumann neighborhood.

This page as a plain text file.
%I A286773 #11 Feb 16 2025 08:33:45
%S A286773 1,1,0,7,16,31,64,127,256,511,1024,2047,4096,8191,16384,32767,65536,
%T A286773 131071,262144,524287,1048576,2097151,4194304,8388607,16777216,
%U A286773 33554431,67108864,134217727,268435456,536870911,1073741824,2147483647,4294967296,8589934591
%N A286773 Decimal representation of the diagonal from the origin to the corner of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 221", based on the 5-celled von Neumann neighborhood.
%C A286773 Initialized with a single black (ON) cell at stage zero.
%D A286773 S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
%H A286773 Robert Price, <a href="/A286773/b286773.txt">Table of n, a(n) for n = 0..126</a>
%H A286773 Robert Price, <a href="/A286773/a286773.tmp.txt">Diagrams of first 20 stages</a>
%H A286773 N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015
%H A286773 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H A286773 S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>
%H A286773 Wolfram Research, <a href="http://atlas.wolfram.com/">Wolfram Atlas of Simple Programs</a>
%H A286773 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H A286773 <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a>
%H A286773 <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%F A286773 Conjectures from _Colin Barker_, May 15 2017: (Start)
%F A286773 G.f.: (1 - x - 3*x^2 + 8*x^3 + 4*x^4 - 8*x^5) / ((1 - x)*(1 + x)*(1 - 2*x)).
%F A286773 a(n) = 2^n for n>2 and even.
%F A286773 a(n) = 2^n - 1 for n>2 and odd.
%F A286773 a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) for n>5.
%F A286773 (End)
%t A286773 CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
%t A286773 code = 221; stages = 128;
%t A286773 rule = IntegerDigits[code, 2, 10];
%t A286773 g = 2 * stages + 1; (* Maximum size of grid *)
%t A286773 a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
%t A286773 ca = a;
%t A286773 ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
%t A286773 PrependTo[ca, a];
%t A286773 (* Trim full grid to reflect growth by one cell at each stage *)
%t A286773 k = (Length[ca[[1]]] + 1)/2;
%t A286773 ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
%t A286773 Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]
%Y A286773 Cf. A286770, A286771, A286772.
%K A286773 nonn,easy
%O A286773 0,4
%A A286773 _Robert Price_, May 14 2017