This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A286798 #19 May 26 2017 22:18:24 %S A286798 1,1,4,2,27,22,248,264,30,2830,3610,830,8,38232,55768,18746,1078, %T A286798 593859,961740,414720,46986,576,10401712,18326976,9457788,1593664, %U A286798 62682,112,202601898,382706674,226526362,49941310,3569882,45296,4342263000,8697475368,5740088706,1540965514,160998750,4909674,16896,101551822350,213865372020,154271354280,48205014786,6580808784,337737294,4200032,2560 %N A286798 Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section. . %C A286798 Row n>0 contains floor(2*(n+1)/3) terms. %H A286798 Gheorghe Coserea, <a href="/A286798/b286798.txt">Rows n=0..123, flattened</a> %H A286798 Luca G. Molinari, Nicola Manini, <a href="https://arxiv.org/abs/cond-mat/0512342">Enumeration of many-body skeleton diagrams</a>, arXiv:cond-mat/0512342 [cond-mat.str-el], 2006. %F A286798 y(x;t) = Sum_{n>=0} P_n(t)*x^n satisfies x^2*deriv(y,x) = (1 - y + x*y^2 + 2*x^2*t*y^3)/(t - (2+t)*y - 3*x*t*y^2), with y(0;t) = 1, where P_n(t) = Sum_{k=0..floor((2*n-1)/3)} T(n,k)*t^k for n>0. %F A286798 A000699(n+1)=T(n,0), A000108(n)=P_n(-1), A286799(n)=P_n(1). %e A286798 A(x;t) = 1 + x + (4 + 2*t)*x^2 + (27 + 22*t)*x^3 + (248 + 264*t + 30*t^2)*x^4 + %e A286798 Triangle starts: %e A286798 n\k [0] [1] [2] [3] [4] [5] %e A286798 [0] 1; %e A286798 [1] 1; %e A286798 [2] 4, 2; %e A286798 [3] 27, 22; %e A286798 [4] 248, 264, 30; %e A286798 [5] 2830, 3610, 830, 8; %e A286798 [6] 38232, 55768, 18746, 1078; %e A286798 [7] 593859, 961740, 414720, 46986, 576; %e A286798 [8] 10401712, 18326976, 9457788, 1593664, 62682, 112; %e A286798 [9] 202601898, 382706674, 226526362, 49941310, 3569882, 45296; %e A286798 [10] ... %t A286798 max = 12; y0[x_, t_] = 1; y1[x_, t_] = 0; For[n = 1, n <= max, n++, y1[x_, t_] = 1 + x y0[x, t]^2 + 3 t x^3 y0[x, t]^2 D[y0[x, t], x] + x^2 (2 y0[x, t] D[y0[x, t], x] + t (2 y0[x, t]^3 - D[y0[x, t], x] + y0[x, t] D[y0[x, t], x])) + O[x]^n // Normal // Simplify; y0[x_, t_] = y1[x, t]]; %t A286798 P[n_, t_] := Coefficient[y0[x, t] , x, n]; %t A286798 row[n_] := CoefficientList[P[n, t], t]; %t A286798 Table[row[n], {n, 0, max}] // Flatten (* _Jean-François Alcover_, May 24 2017, adapted from PARI *) %o A286798 (PARI) %o A286798 A286795_ser(N, t='t) = { %o A286798 my(x='x+O('x^N), y0=1, y1=0, n=1); %o A286798 while(n++, %o A286798 y1 = (1 + x*(1 + 2*t + x*t^2)*y0^2 + t*(1-t)*x^2*y0^3 + 2*x^2*y0*y0'); %o A286798 y1 = y1 / (1+2*x*t); if (y1 == y0, break()); y0 = y1;); y0; %o A286798 }; %o A286798 A286798_ser(N,t='t) = { %o A286798 my(v = A286795_ser(N,t)); subst(v, 'x, serreverse(x/(1-x*t*v))); %o A286798 }; %o A286798 concat(apply(p->Vecrev(p), Vec(A286798_ser(12)))) %o A286798 \\ test: y=A286798_ser(50); x^2*y' == (1 - y + x*y^2 + 2*x^2*t*y^3)/(t - (2+t)*y - 3*x*t*y^2) %Y A286798 Cf. A286781, A286782, A286783, A286784, A286785. %K A286798 nonn,tabf %O A286798 0,3 %A A286798 _Gheorghe Coserea_, May 21 2017