cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286810 Number of non-attacking bishop positions on a cylindrical 2 X 2n chessboard.

This page as a plain text file.
%I A286810 #38 Dec 02 2017 02:20:26
%S A286810 1,9,49,324,2209,15129,103684,710649,4870849,33385284,228826129,
%T A286810 1568397609,10749957124,73681302249,505019158609,3461452808004,
%U A286810 23725150497409,162614600673849,1114577054219524,7639424778862809,52361396397820129,358890350005878084,2459871053643326449,16860207025497407049
%N A286810 Number of non-attacking bishop positions on a cylindrical 2 X 2n chessboard.
%C A286810 Essentially the same as A081069. - _R. J. Mathar_, May 25 2017
%H A286810 Colin Barker, <a href="/A286810/b286810.txt">Table of n, a(n) for n = 0..1000</a>
%H A286810 Richard M. Low and Ardak Kapbasov, <a href="https://www.emis.de/journals/JIS/VOL20/Low/low2.html">Non-Attacking Bishop and King Positions on Regular and Cylindrical Chessboards</a>, Journal of Integer Sequences, Vol. 20 (2017), Article 17.6.1, Table 9.
%H A286810 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (8,-8,1).
%F A286810 G.f.: (1+x^2-15*x^4+3*x^6) / (1-8*x^2+8*x^4-x^6).
%F A286810 a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3) for n>3. - _Colin Barker_, May 21 2017
%o A286810 (PARI) Vec((1 + x - 15*x^2 + 3*x^3) / ((1 - x)*(1 - 7*x + x^2)) + O(x^30)) \\ _Colin Barker_, May 21 2017
%K A286810 nonn,easy
%O A286810 0,2
%A A286810 _Richard M. Low_, May 20 2017