This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A286820 #12 Jun 26 2017 07:58:35 %S A286820 1,2,3,8,25,6,7,8,9,30,33,24,26,126,30,32,153,126,152,120,126,726, %T A286820 5888,24,25,26,27,728,145,30,31,32,33,5066,840,144,5883,152,5070,120, %U A286820 123,126,129,5192,720,5888,752,144,147,150,153,728,848,864,46200,728 %N A286820 a(n) = smallest positive multiple of n whose factorial base representation contains only 0's and 1's. %C A286820 All terms belong to A059590. %C A286820 a(n) = n iff n belongs to A059590. %C A286820 The sequence is well defined: for any n > 0: according to the pigeonhole principle, among the n+1 first repunits in factorial base (A007489), there must be two distinct terms equal modulo n; their absolute difference is a positive multiple of n, and contains only 0's and 1's in factorial base. %C A286820 This sequence is to factorial base what A004290 is to decimal base. %H A286820 Rémy Sigrist, <a href="/A286820/b286820.txt">Table of n, a(n) for n = 1..2000</a> %H A286820 Wikipedia, <a href="https://en.wikipedia.org/wiki/Factorial_number_system">Factorial number system</a> %H A286820 <a href="/index/Fa#facbase">Index entries for sequences related to factorial base representation</a> %e A286820 The first terms are: %e A286820 n a(n) a(n) in factorial base %e A286820 -- ---- ---------------------- %e A286820 1 1 1 %e A286820 2 2 1,0 %e A286820 3 3 1,1 %e A286820 4 8 1,1,0 %e A286820 5 25 1,0,0,1 %e A286820 6 6 1,0,0 %e A286820 7 7 1,0,1 %e A286820 8 8 1,1,0 %e A286820 9 9 1,1,1 %e A286820 10 30 1,1,0,0 %e A286820 11 33 1,1,1,1 %e A286820 12 24 1,0,0,0 %e A286820 13 26 1,0,1,0 %e A286820 14 126 1,0,1,0,0 %e A286820 15 30 1,1,0,0 %e A286820 16 32 1,1,1,0 %e A286820 17 153 1,1,1,1,1 %e A286820 18 126 1,0,1,0,0 %e A286820 19 152 1,1,1,1,0 %e A286820 20 120 1,0,0,0,0 %o A286820 (PARI) isA059590(n) = my (r=2); while (n, if (n%r > 1, return (0), n\=r; r++)); return (1) %o A286820 a(n) = forstep (m=n, oo, n, if (isA059590(m), return (m))) %Y A286820 Cf. A004290, A007489, A059590, A284750. %K A286820 nonn,base %O A286820 1,2 %A A286820 _Rémy Sigrist_, Jun 24 2017