This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A286841 #48 Dec 04 2022 13:06:28 %S A286841 0,8,99,1958,28322,228249,2827300,55922199,808904403,9781942334, %T A286841 52199939826,603633907222,11356596271444,11356596271444, %U A286841 1828607235824962,37264994707118563,651495710876207647,5974828584341646375,49226908181248336040 %N A286841 One of the two successive approximations up to 13^n for 13-adic integer sqrt(-1). Here the 8 (mod 13) case (except for n=0). %H A286841 Seiichi Manyama, <a href="/A286841/b286841.txt">Table of n, a(n) for n = 0..899</a> %H A286841 Wikipedia, <a href="https://en.wikipedia.org/wiki/Hensel%27s_lemma">Hensel's Lemma</a>. %F A286841 If n > 0, a(n) = 13^n - A286840(n). %F A286841 a(0) = 0 and a(1) = 8, a(n) = a(n-1) + 4 * (a(n-1)^2 + 1) mod 13^n for n > 1. %F A286841 a(n) == L(13^n,8) (mod 13^n) == (4 + sqrt(17))^(13^n) + (4 - sqrt(17))^(13^n) (mod 13^n), where L(n,x) denotes the n-th Lucas polynomial of A114525. - _Peter Bala_, Nov 20 2022 %t A286841 {0}~Join~Table[#&@@Select[PowerModList[-1, 1/2, 13^k], Mod[#, 13] == 8 &], {k, 18}] (* _Giorgos Kalogeropoulos_, Oct 22 2022 *) %o A286841 (Ruby) %o A286841 def A(k, m, n) %o A286841 ary = [0] %o A286841 a, mod = k, m %o A286841 n.times{ %o A286841 b = a % mod %o A286841 ary << b %o A286841 a = b ** m %o A286841 mod *= m %o A286841 } %o A286841 ary %o A286841 end %o A286841 def A286841(n) %o A286841 A(8, 13, n) %o A286841 end %o A286841 p A286841(100) %o A286841 (Python) %o A286841 def A(k, m, n): %o A286841 ary=[0] %o A286841 a, mod = k, m %o A286841 for i in range(n): %o A286841 b=a%mod %o A286841 ary.append(b) %o A286841 a=b**m %o A286841 mod*=m %o A286841 return ary %o A286841 def a286841(n): %o A286841 return A(8, 13, n) %o A286841 print(a286841(100)) # _Indranil Ghosh_, Aug 03 2017, after Ruby %o A286841 (PARI) a(n) = if (n, 13^n - truncate(sqrt(-1+O(13^n))), 0); \\ _Michel Marcus_, Aug 04 2017 %Y A286841 The two successive approximations up to p^n for p-adic integer sqrt(-1): A048898 and A048899 (p=5), A286840 and this sequence (p=13), A286877 and A286878 (p=17). %Y A286841 Cf. A114525, A286839. %K A286841 nonn,easy %O A286841 0,2 %A A286841 _Seiichi Manyama_, Aug 01 2017