cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286849 Array read by antidiagonals: T(m,n) = number of minimal dominating sets in the n X m king graph.

This page as a plain text file.
%I A286849 #17 Feb 16 2025 08:33:45
%S A286849 1,2,2,2,4,2,4,6,6,4,4,16,12,16,4,7,20,36,36,20,7,9,52,64,256,64,52,9,
%T A286849 13,80,204,400,400,204,80,13,18,176,446,2704,971,2704,446,176,18,25,
%U A286849 296,1184,6400,6486,6486,6400,1184,296,25
%N A286849 Array read by antidiagonals: T(m,n) = number of minimal dominating sets in the n X m king graph.
%H A286849 Andrew Howroyd, <a href="/A286849/b286849.txt">Table of n, a(n) for n = 1..153</a>
%H A286849 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/KingGraph.html">King Graph</a>
%H A286849 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MinimalDominatingSet.html">Minimal Dominating Set</a>
%e A286849 Array begins:
%e A286849 ===========================================================
%e A286849 m\n|  1   2    3     4      5       6        7         8
%e A286849 ---|-------------------------------------------------------
%e A286849 1  |  1   2    2     4      4       7        9        13...
%e A286849 2  |  2   4    6    16     20      52       80       176...
%e A286849 3  |  2   6   12    36     64     204      446      1184...
%e A286849 4  |  4  16   36   256    400    2704     6400     30976...
%e A286849 5  |  4  20   64   400    971    6486    22177    112317...
%e A286849 6  |  7  52  204  2704   6486   85405   351503   3082745...
%e A286849 7  |  9  80  446  6400  22177  351503  1997448  21587536...
%e A286849 8  | 13 176 1184 30976 112317 3082745 21587536 360584008...
%e A286849 ...
%Y A286849 Rows 1-2 are A253413, A286850.
%Y A286849 Main diagonal is A286881.
%Y A286849 Cf. A218663 (dominating sets), A245013 (independent), A286870 (irredundant).
%Y A286849 Cf. A286847 (grid graph).
%K A286849 nonn,tabl
%O A286849 1,2
%A A286849 _Andrew Howroyd_, Aug 01 2017