This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A286878 #37 Mar 21 2021 13:00:34 %S A286878 0,13,251,1985,56028,390112,390112,96940388,3379649772,24306922095, %T A286878 1565949316556,5597937117454,553948278039582,6380170650337192, %U A286878 154948841143926247,2848994066094341111,5711417117604156904,735629295252607184119,7353551390343301297535 %N A286878 One of the two successive approximations up to 17^n for 17-adic integer sqrt(-1). Here the 13 (mod 17) case (except for n=0). %C A286878 x = ...04B6ED, %C A286878 x^2 = ...GGGGGG = -1. %H A286878 Seiichi Manyama, <a href="/A286878/b286878.txt">Table of n, a(n) for n = 0..812</a> %H A286878 Wikipedia, <a href="https://en.wikipedia.org/wiki/Hensel%27s_lemma">Hensel's Lemma</a>. %F A286878 If n > 0, a(n) = 17^n - A286877(n). %F A286878 a(0) = 0 and a(1) = 13, a(n) = a(n-1) + 15 * (a(n-1)^2 + 1) mod 17^n for n > 1. %e A286878 a(1) = ( D)_17 = 13, %e A286878 a(2) = ( ED)_17 = 251, %e A286878 a(3) = ( 6ED)_17 = 1985, %e A286878 a(4) = (B6ED)_17 = 56028. %o A286878 (Ruby) %o A286878 def A(k, m, n) %o A286878 ary = [0] %o A286878 a, mod = k, m %o A286878 n.times{ %o A286878 b = a % mod %o A286878 ary << b %o A286878 a = b ** m %o A286878 mod *= m %o A286878 } %o A286878 ary %o A286878 end %o A286878 def A286878(n) %o A286878 A(13, 17, n) %o A286878 end %o A286878 p A286878(100) %o A286878 (Python) %o A286878 def A(k, m, n): %o A286878 ary=[0] %o A286878 a, mod = k, m %o A286878 for i in range(n): %o A286878 b=a%mod %o A286878 ary.append(b) %o A286878 a=b**m %o A286878 mod*=m %o A286878 return ary %o A286878 def a286878(n): return A(13, 17, n) %o A286878 print(a286878(100)) # _Indranil Ghosh_, Aug 03 2017, after Ruby %o A286878 (PARI) a(n) = if (n, 17^n-truncate(sqrt(-1+O(17^n))), 0); \\ _Michel Marcus_, Aug 04 2017 %Y A286878 The two successive approximations up to p^n for p-adic integer sqrt(-1): A048898 and A048899 (p=5), A286840 and A286841 (p=13), A286877 and this sequence (p=17). %K A286878 nonn %O A286878 0,2 %A A286878 _Seiichi Manyama_, Aug 02 2017