This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A286880 #14 Feb 16 2025 08:33:45 %S A286880 1,2,1,2,3,1,2,4,5,1,2,5,10,9,1,4,6,17,28,17,1,2,12,26,65,82,33,1,2,8, %T A286880 50,126,257,244,65,1,2,9,50,252,626,1025,730,129,1,4,10,65,344,1394, %U A286880 3126,4097,2188,257,1,2,18,82,513,2402,8052,15626,16385,6562,513,1,4,12,130,730,4097,16808,47450,78126,65537,19684,1025,1 %N A286880 Square array A(n,k), n>=0, k>=1, read by antidiagonals, where row n is the sum of n-th powers of unitary divisors of k (divisors d such that gcd(d, k/d) = 1). %C A286880 For row r > 0, Sum_{k=1..n} A(r,k) ~ zeta(r+1) * n^(r+1) / ((r+1) * zeta(r+2)). - _Vaclav Kotesovec_, May 20 2021 %H A286880 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/UnitaryDivisor.html">Unitary Divisor</a> %H A286880 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/UnitaryDivisorFunction.html">Unitary Divisor Function</a> %H A286880 <a href="/index/Su#sums_of_divisors">Index entries for sequences related to sums of divisors</a> %F A286880 Dirichlet g.f. of row n: zeta(s)*zeta(s-n)/zeta(2*s-n). %e A286880 Square array begins: %e A286880 1, 2, 2, 2, 2, 4, ... %e A286880 1, 3, 4, 5, 6, 12, ... %e A286880 1, 5, 10, 17, 26, 50, ... %e A286880 1, 9, 28, 65, 126, 252, ... %e A286880 1, 17, 82, 257, 626, 1394, ... %e A286880 1, 33, 244, 1025, 3126, 8052, ... %Y A286880 Rows n=0-8 give: A034444, A034448, A034676, A034677, A034678, A034679, A034680, A034681, A034682. %Y A286880 Cf. A077610, A109974, A285425. %K A286880 nonn,tabl %O A286880 0,2 %A A286880 _Ilya Gutkovskiy_, Aug 02 2017