cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286889 Sequence generated by the reciprocal of the generating function for A051424.

This page as a plain text file.
%I A286889 #44 Jun 25 2024 01:30:26
%S A286889 1,-1,-1,0,1,0,1,-1,0,0,1,-3,2,0,3,-1,-2,-10,8,5,8,-6,-3,-24,17,8,12,
%T A286889 -15,19,-37,18,-29,18,3,109,-72,-28,-153,46,72,335,-165,-86,-346,84,
%U A286889 -34,650,-224,245,-492,-69,-1054,966,161
%N A286889 Sequence generated by the reciprocal of the generating function for A051424.
%C A286889 Inverts A051424 by discrete convolution: Sum_{k=0..n} rpp(k) rpp2(n-k) = delta_{n,0}. This is easy enough to see by the generating function definition of the sequence.
%F A286889 Letting rpp(n) := A051424(n), and this sequence equal rpp2(n), we have the following two formulas for Euler's totient function:
%F A286889 phi(n) = Sum_{j=1..n} Sum_{k=1..j-1} Sum_{i=0..j-1-k} rpp_2(n-j) rpp(j-1-k-i) Iverson{(i+k+1, k)=1};
%F A286889 phi(n) = Sum_{d:(d,n)=1} (Sum_{k=1..d+1} Sum_{i=1..d} Sum_{j=2..k} rpp(k-j) rpp_2(i+1-k) mu_{d,i} phi(j)).
%F A286889 I prove that these expressions are correct in an article I have written which motivated the need for this sequence. A proof is available upon reasonable email request.
%t A286889 (* For all the terms of the sequence A051424 listed in the database, the partial generating function for the sequence is given by:
%t A286889   rpp2[n_] :=
%t A286889   SeriesCoefficient[1/(1 + q + 2 q^2 + 3 q^3 + 4 q^4 + 6 q^5 + 7 q^6 + 10 q^7 +
%t A286889      12 q^8 + 15 q^9 + 18 q^10 + 23 q^11 + 27 q^12 + 33 q^13 +
%t A286889      38 q^14 + 43 q^15 + 51 q^16 + 60 q^17 + 70 q^18 + 81 q^19 +
%t A286889      92 q^20 + 102 q^21 + 116 q^22 + 134 q^23 + 153 q^24 + 171 q^25 +
%t A286889      191 q^26 + 211 q^27 + 236 q^28 + 266 q^29 + 301 q^30 +
%t A286889      335 q^31 + 367 q^32 + 399 q^33 + 442 q^34 + 485 q^35 +
%t A286889      542 q^36 + 598 q^37 + 649 q^38 + 704 q^39 + 771 q^40 +
%t A286889      849 q^41 + 936 q^42 + 1023 q^43 + 1103 q^44 + 1185 q^45 +
%t A286889      1282 q^46 + 1407 q^47 + 1535 q^48 + 1662 q^49 + 1790 q^50 +
%t A286889      1917 q^51 + 2063 q^52 + 2245 q^53 + 2436 q^54), {q, 0, n}]
%t A286889   Table[rpp2[n], {n, 0, 53}] *)
%t A286889 (* This generating function was created from the original sequence data by the following code: *)
%t A286889   StringSplit["1, 1, 2, 3, 4, 6, 7, 10, 12, 15, 18, 23, 27, 33, 38, 43, 51, 60, 70, 81, 92, 102, 116, 134, 153, 171, 191, 211, 236, 266, 301, 335, 367, 399, 442,     485, 542, 598, 649, 704, 771, 849, 936, 1023, 1103, 1185, 1282, 1407, 1535, 1662, 1790, 1917, 2063, 2245, 2436", ", "]
%t A286889   MapIndexed[ToExpression[(#1)] Power[q, First[#2] - 1] &, %]
%t A286889   Apply[Plus, %]
%t A286889   TeXForm@PolynomialForm[%, TraditionalOrder -> False]
%Y A286889 Cf. A051424.
%K A286889 sign
%O A286889 0,12
%A A286889 _Maxie D. Schmidt_, Aug 04 2017