This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A286892 #34 Apr 29 2019 04:45:39 %S A286892 1,1,1,1,1,3,1,3,27,438,1,6,140,8766,504504,1,16,1056,189774,33258880, %T A286892 6573403050,1,48,8730,4292514,2366403930,1387750992012, %U A286892 846182953495152,1,108,63108,99797220,159511561440,282061024690536,530143167401850960,976645996512669379710 %N A286892 Triangle read by rows: T(n,m) is the number of inequivalent n X m matrices under action of the Klein group, with one-third each of 1s, 2s and 3s (ordered occurrences rounded up/down if m*n != 0 mod 3). %C A286892 Computed using Polya's enumeration theorem for coloring. %H A286892 María Merino, <a href="/A286892/b286892.txt">Rows n=0..47 of triangle, flattened</a> %H A286892 M. Merino and I. Unanue, <a href="https://doi.org/10.1387/ekaia.17851">Counting squared grid patterns with Pólya Theory</a>, EKAIA, 34 (2018), 289-316 (in Basque). %F A286892 G.f.: g(x1,x2,x3)=(y1^(m*n) + 3*y2^(m*n/2))/4 for even n and m; %F A286892 (y1^(m*n) + y1^n*y2^((m*n-m)/2) + 2*y2^(m*n/2))/4 for odd n and even m; %F A286892 (y1^(m*n) + y1^m*y2^((m*n-n)/2) + 2*y2^(m*n/2))/4 for even n and odd m; %F A286892 (y1^(m*n) + y1^n*y2^((m*n-n)/2) + y1^m*y2^((m*n-m)/2) + y1*y2^((m*n-1)/2))/4 for odd n and m; where coefficient correspond to y1=x1+x2+x3, y2=x1^2+x2^2+x3^2, and occurrences of numbers are ceiling(m*n/3) for the first k numbers and floor(m*n/3) for the last (3-k) numbers, if m*n = k mod 3. %e A286892 For n = 3 and m = 2 the T(3,2) = 27 solutions are colorings of 3 X 2 matrices in 3 colors inequivalent under the action of the Klein group with exactly 2 occurrences of each color (coefficient of x1^2 x2^2 x3^2). %e A286892 Triangle begins: %e A286892 ================================================= %e A286892 n\m | 0 1 2 3 4 5 %e A286892 ----|-------------------------------------------- %e A286892 0 | 1 %e A286892 1 | 1 1 %e A286892 2 | 1 1 3 %e A286892 3 | 1 3 27 438 %e A286892 4 | 1 6 140 8766 504504 %e A286892 5 | 1 16 1056 189774 33258880 6573403050 %Y A286892 Cf. A283435, A287020, A287021, A287022, A287377, A287378, A287383, A287384. %K A286892 nonn,tabl %O A286892 0,6 %A A286892 _María Merino_, Imanol Unanue, May 15 2017