A286893 Triangle read by rows: T(n,m) is the number of pattern classes in the (n,m)-rectangular grid with 6 colors and n>=m, two patterns are in the same class if one of them can be obtained by a reflection or 180-degree rotation of the other.
1, 1, 6, 1, 21, 351, 1, 126, 12096, 2544696, 1, 666, 420876, 544638816, 705278736576, 1, 3996, 15132096, 117564302016, 914040184444416, 7107572245840091136, 1, 23436, 544230576, 25390538401536, 1184595336212990976, 55268479955808421134336, 2578606199622710056510488576
Offset: 0
Examples
Triangle begins: ============================================================================ n\m | 0 1 2 3 4 5 ----|----------------------------------------------------------------------- 0 | 1 1 | 1 6 2 | 1 21 351 3 | 1 126 12096 2544696 4 | 1 666 420876 544638816 705278736576 5 | 1 3996 15132096 117564302016 914040184444416 7107572245840091136 ...
Links
- María Merino, Rows n=0..36 of triangle, flattened
- M. Merino and I. Unanue, Counting squared grid patterns with Pólya Theory, EKAIA, 34 (2018), 289-316 (in Basque).
Formula
For even n and m: T(n,m) = (6^(m*n) + 3*6^(m*n/2))/4;
for even n and odd m: T(n,m) = (6^(m*n) + 6^((m*n+n)/2) + 2*6^(m*n/2))/4;
for odd n and even m: T(n,m) = (6^(m*n) + 6^((m*n+m)/2) + 2*6^(m*n/2))/4;
for odd n and m: T(n,m) = (6^(m*n) + 6^((m*n+n)/2) + 6^((m*n+m)/2) + 6^((m*n+1)/2))/4.
Comments