A286895 Triangle read by rows: T(n,m) is the number of pattern classes in the (n,m)-rectangular grid with 7 colors and n>=m, two patterns are in the same class if one of them can be obtained by a reflection or 180-degree rotation of the other.
1, 1, 7, 1, 28, 637, 1, 196, 30184, 10151428, 1, 1225, 1443001, 3461821825, 8308236966001, 1, 8575, 70656628, 1186972525900, 19948070175962425, 335267157313994232775, 1, 58996, 3460410037, 407106879976216, 47895307855522569001, 5634835073082541702198396, 662932711464914589254954278237
Offset: 0
Examples
Triangle begins: ============================================================================ n\m | 0 1 2 3 4 5 ----|----------------------------------------------------------------------- 0 | 1 1 | 1 7 2 | 1 28 637 3 | 1 196 30184 10151428 4 | 1 1225 1443001 3461821825 8308236966001 5 | 1 8575 70656628 1186972525900 19948070175962425 335267157313994232775 ...
Links
- María Merino, Rows n=0..35 of triangle, flattened
- M. Merino and I. Unanue, Counting squared grid patterns with Pólya Theory, EKAIA, 34 (2018), 289-316 (in Basque).
Formula
For even n and m: T(n,m) = (7^(m*n) + 3*7^(m*n/2))/4;
for even n and odd m: T(n,m) = (7^(m*n) + 7^((m*n+n)/2) + 2*7^(m*n/2))/4;
for odd n and even m: T(n,m) = (7^(m*n) + 7^((m*n+m)/2) + 2*7^(m*n/2))/4;
for odd n and m: T(n,m) = (7^(m*n) + 7^((m*n+n)/2) + 7^((m*n+m)/2) + 7^((m*n+1)/2))/4.
Comments