This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A286897 #16 Feb 02 2025 11:08:19 %S A286897 1,5,1,23,6,1,109,33,7,1,544,182,45,8,1,2876,1034,284,59,9,1,16113, %T A286897 6122,1815,420,75,10,1,95495,37927,11931,2987,595,93,11,1,597155, %U A286897 246030,81205,21620,4665,814,113,12,1,3929243,1669941,573724,160607,36900,6979,1082,135,13,1 %N A286897 Sum T(n,k) of the k-th last entries in all blocks of all set partitions of [n]; triangle T(n,k), n>=1, 1<=k<=n, read by rows. %H A286897 Alois P. Heinz, <a href="/A286897/b286897.txt">Row n = 1..50, flattened</a> %H A286897 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a> %e A286897 T(3,2) = 6 because the sum of the second last entries in all blocks of all set partitions of [3] (123, 12|3, 13|2, 1|23, 1|2|3) is 2+1+1+2 = 6. %e A286897 Triangle T(n,k) begins: %e A286897 1; %e A286897 5, 1; %e A286897 23, 6, 1; %e A286897 109, 33, 7, 1; %e A286897 544, 182, 45, 8, 1; %e A286897 2876, 1034, 284, 59, 9, 1; %e A286897 16113, 6122, 1815, 420, 75, 10, 1; %e A286897 95495, 37927, 11931, 2987, 595, 93, 11, 1; %e A286897 ... %p A286897 b:= proc(n, l) option remember; `if`(n=0, [1, 0], %p A286897 (p-> p+[0, n*p[1]*x^1])(b(n-1, [l[], 1]))+ %p A286897 add((p-> p+[0, n*p[1]*x^(l[j]+1)])(b(n-1, %p A286897 sort(subsop(j=l[j]+1, l), `>`))), j=1..nops(l))) %p A286897 end: %p A286897 T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n, [])[2]): %p A286897 seq(T(n), n=1..14); %t A286897 b[0, _] = {1, 0}; b[n_, l_] := b[n, l] = Function[p, p + {0, n*p[[1]]*x^1} ][b[n - 1, Append[l, 1]]] + Sum[Function[p, p + {0, n*p[[1]]*x^(l[[j]] + 1)}][b[n - 1, Reverse @ Sort[ReplacePart[l, j -> l[[j]] + 1]]]], {j, 1, Length[l]}]; %t A286897 T[n_] := Function[p, Table[Coefficient[p, x, i], {i, n}]][b[n, {}][[2]]]; %t A286897 Table[T[n], {n, 1, 14}] // Flatten (* _Jean-François Alcover_, May 26 2018, from Maple *) %Y A286897 Column k=1 gives A278677(n-1). %Y A286897 Row sums give A000110(n) * A000217(n) = A105488(n+3). %Y A286897 Cf. A285595. %K A286897 nonn,tabl %O A286897 1,2 %A A286897 _Alois P. Heinz_, May 15 2017