This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A286899 #29 Jul 08 2019 01:32:01 %S A286899 1,1,2,1,8,3,1,32,21,4,1,128,183,40,5,1,512,1641,544,65,6,1,2048, %T A286899 14763,8320,1205,96,7,1,8192,132861,131584,26465,2256,133,8,1,32768, %U A286899 1195743,2099200,628805,64896,3787,176,9,1,131072,10761681,33562624,15424865 %N A286899 Array read by antidiagonals: A(n, L) is the number of closed walks of length 2L along the edges of an n-cube based at a vertex, for n >= 1 and L >= 1. %D A286899 R. P. Stanley, Algebraic Combinatorics: Walks, Trees, Tableaux, and More, Springer, 2013. %H A286899 Melvin Peralta, <a href="/A286899/b286899.txt">Table of n, a(n) for n = 1..120</a> %F A286899 A(n, L) = (1/2^n)*Sum_{i=0..n} binomial(n, i)*(n - 2*i)^(2*L). (Corrected by _Peter Luschny_, Jul 07 2019.) %e A286899 A(2, 2) = 8 because at each vertex of a 2-cube (i.e., a square), there are 8 closed walks of length 2(2) = 4. %e A286899 A(1, k) = 1 because at the vertex of a 1-cube, there is 1 closed walk of any length 2*k. %e A286899 Array A(n, L) begins: %e A286899 1 1 1 1 1 1 ... %e A286899 2 8 32 128 512 2048 ... %e A286899 3 21 183 1641 14763 132861 ... %e A286899 4 40 544 8320 131584 2099200 ... %e A286899 5 65 1205 26465 628805 15424865 ... %e A286899 6 96 2256 64896 2086656 71172096 ... %e A286899 7 133 3787 134953 5501167 243147373 ... %p A286899 A286899 := proc(n,L) %p A286899 add(binomial(n,i)*(n-2*i)^L, i=0..n) ; %p A286899 %/2^n ; %p A286899 end proc: %p A286899 for n from 1 to 7 do %p A286899 for L from 2 to 12 by 2 do %p A286899 printf("%9d ",A286899(n,L)) ; %p A286899 end do: %p A286899 printf("\n") ; %p A286899 end do: # _R. J. Mathar_, May 22 2017 %t A286899 f[n_, l_] := 1/2^n*Sum[Binomial[n, i]*(n - 2 i)^l, {i, 0, n}]; %t A286899 Table[f[n - l + 1, 2 l], {n, 1, 15}, {l, n, 1, -1}] // Flatten %Y A286899 Cf. A054879, A092812, A121822. %K A286899 nonn,walk,tabl,easy %O A286899 1,3 %A A286899 _Melvin Peralta_, May 15 2017