A286906 Unitary phi-practical numbers: numbers k such that each m < k is a sum of a subset of {uphi(d) : d | k, gcd(d,k/d)=1}, where uphi is the unitary totient function (A047994).
1, 2, 3, 6, 12, 15, 30, 42, 60, 84, 105, 120, 132, 156, 165, 195, 210, 240, 255, 330, 390, 420, 462, 510, 546, 570, 660, 690, 714, 780, 798, 840, 870, 924, 930, 966, 1020, 1050, 1092, 1140, 1155, 1218, 1302, 1320, 1365, 1380, 1428, 1554, 1560, 1596, 1680
Offset: 1
Keywords
Examples
The unitary divisors of 12 are 1, 3, 4 and 12, and the set of their uphi values is {1, 2, 3, 6}. Each number below 12 is the sum of a subset, e.g., 11 = 2 + 3 + 6, 10 = 1 + 3 + 6, etc.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Nicholas Schwab and Lola Thompson, A generalization of the practical numbers, arXiv:1701.08504 [math.NT], 2017.
Programs
-
Mathematica
uphi[n_] := If[n == 1, 1, (Times @@ (Table[#[[1]]^#[[2]] - 1, {1}] & /@ FactorInteger[n]))[[1]]]; uDivisors[n_] := Select[Divisors[n], GCD[#, n/#] == 1 &]; uPhiPracticalQ[n_] := If[n < 1, False, If[n == 1, True, (lst = Sort@Map[uphi, uDivisors[n]]; ok = True; Do[If[lst[[m]] > Sum[lst[[l]], {l, 1, m - 1}] + 1, (ok = False; Break[])], {m, 1, Length[lst]}]; ok)]]; Select[Range[10000], uPhiPracticalQ]
Comments