cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286918 Total number of nodes summed over all lattice paths from (0,0) to (n,n) using steps {(k,0), (0,k) | 0 which never go above the diagonal x=y.

This page as a plain text file.
%I A286918 #19 Dec 29 2020 09:04:13
%S A286918 1,3,21,159,1257,10046,81811,674184,5605141,46920874,394949193,
%T A286918 3339464105,28343082002,241324470723,2060357315568,17632454524499,
%U A286918 151211115930880,1299121121946684,11179500360964780,96344672766997340,831385476662968094,7182777882757416692
%N A286918 Total number of nodes summed over all lattice paths from (0,0) to (n,n) using steps {(k,0), (0,k) | 0<k<=4} which never go above the diagonal x=y.
%H A286918 Alois P. Heinz, <a href="/A286918/b286918.txt">Table of n, a(n) for n = 0..1000</a>
%F A286918 a(n) ~ c * d^n / sqrt(n), where d = 8.84734830841870961487278801886633962039798... is the real root of the equation 4 + 4*d - 8*d^2 - 8*d^3 + d^4 = 0 and c = 0.43633259077568249345422000202799136319250347607927734138960545201547... - _Vaclav Kotesovec_, May 30 2017
%p A286918 b:= proc(x, y) option remember; `if`(y>x or y<0, 0,
%p A286918       `if`(x=0, [1$2], add((p-> p+[0, p[1]])(
%p A286918          b(x-j, y)+b(x, y-j)), j=1..4)))
%p A286918     end:
%p A286918 a:= n-> b(n$2)[2]:
%p A286918 seq(a(n), n=0..25);
%t A286918 b[x_, y_] := b[x, y] = If[y > x || y < 0, {0, 0}, If[x == 0, {1, 1}, Sum[Function[p, p + {0, p[[1]]}][b[x-j, y] + b[x, y-j]], {j, 1, 4}]]];
%t A286918 a[n_] := b[n, n][[2]];
%t A286918 a /@ Range[0, 25] (* _Jean-François Alcover_, Dec 29 2020, after _Alois P. Heinz_ *)
%Y A286918 Cf. A175891.
%K A286918 nonn
%O A286918 0,2
%A A286918 _Alois P. Heinz_, May 17 2017