A286919 Triangle read by rows: T(n,m) is the number of pattern classes in the (n,m)-rectangular grid with 8 colors and n>=m, two patterns are in the same class if one of them can be obtained by a reflection or 180-degree rotation of the other.
1, 1, 8, 1, 36, 1072, 1, 288, 66816, 33693696, 1, 2080, 4197376, 17184194560, 70368756760576, 1, 16640, 268517376, 8796399206400, 288230393868451840, 9444732983468915425280, 1, 131328, 17180065792, 4503616874348544, 1180591620768950910976, 309485009825866260538195968, 81129638414606695206587887255552
Offset: 0
Examples
Triangle begins: ======================================================== n\m | 0 1 2 3 4 ----|--------------------------------------------------- 0 | 1 1 | 1 8 2 | 1 36 1072 3 | 1 288 66816 33693696 4 | 1 2080 4197376 17184194560 70368756760576 ...
Links
- María Merino, Rows n=0..35 of triangle, flattened
- M. Merino and I. Unanue, Counting squared grid patterns with Pólya Theory, EKAIA, 34 (2018), 289-316 (in Basque).
Formula
For even n and m: T(n,m) = (8^(m*n) + 3*8^(m*n/2))/4;
for even n and odd m: T(n,m) = (8^(m*n) + 8^((m*n+n)/2) + 2*8^(m*n/2))/4;
for odd n and even m: T(n,m) = (8^(m*n) + 8^((m*n+m)/2) + 2*8^(m*n/2))/4;
for odd n and m: T(n,m) = (8^(m*n) + 8^((m*n+n)/2) + 8^((m*n+m)/2) + 8^((m*n+1)/2))/4.
Comments