This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A286920 #24 Apr 29 2019 08:24:58 %S A286920 1,1,9,1,45,1701,1,405,134865,97135605,1,3321,10766601,70618411521, %T A286920 463255079498001,1,29889,871858485,51473762336565,3039416437115008521, %U A286920 179474497026544179696969,1,266085,70607782701,37523729625344145,19941610769429949618201,10597789568841677482963905405,5632099886234793715531013441442501 %N A286920 Triangle read by rows: T(n,m) is the number of pattern classes in the (n,m)-rectangular grid with 9 colors and n>=m, two patterns are in the same class if one of them can be obtained by a reflection or 180-degree rotation of the other. %C A286920 Computed using Burnsides orbit-counting lemma. %H A286920 María Merino, <a href="/A286920/b286920.txt">Rows n=0..33 of triangle, flattened</a> %H A286920 M. Merino and I. Unanue, <a href="https://doi.org/10.1387/ekaia.17851">Counting squared grid patterns with Pólya Theory</a>, EKAIA, 34 (2018), 289-316 (in Basque). %F A286920 For even n and m: T(n,m) = (9^(m*n) + 3*9^(m*n/2))/4; %F A286920 for even n and odd m: T(n,m) = (9^(m*n) + 9^((m*n+n)/2) + 2*9^(m*n/2))/4; %F A286920 for odd n and even m: T(n,m) = (9^(m*n) + 9^((m*n+m)/2) + 2*9^(m*n/2))/4; %F A286920 for odd n and m: T(n,m) = (9^(m*n) + 9^((m*n+n)/2) + 9^((m*n+m)/2) + 9^((m*n+1)/2))/4. %e A286920 Triangle begins: %e A286920 ========================================================== %e A286920 n\m | 0 1 2 3 4 %e A286920 ----|----------------------------------------------------- %e A286920 0 | 1 %e A286920 1 | 1 9 %e A286920 2 | 1 45 1701 %e A286920 3 | 1 405 134865 97135605 %e A286920 4 | 1 3321 10766601 70618411521 463255079498001 %e A286920 ... %Y A286920 Cf. A225910, A283432, A283433, A283434, A286893, A286895, A286919. %K A286920 nonn,tabl %O A286920 0,3 %A A286920 _María Merino_, Imanol Unanue, _Yosu Yurramendi_, May 16 2017