A286921 Triangle read by rows: T(n,m) is the number of pattern classes in the (n,m)-rectangular grid with 10 colors and n>=m, two patterns are in the same class if one of them can be obtained by a reflection or 180-degree rotation of the other.
1, 1, 10, 1, 55, 2575, 1, 550, 253000, 250525000, 1, 5050, 25007500, 250025500000, 2500000075000000, 1, 50500, 2500300000, 250002775000000, 25000000255000000000, 2500000000502500000000000, 1, 500500, 250000750000, 250000250500000000, 250000000000750000000000, 250000000000250500000000000000, 250000000000000000750000000000000000
Offset: 0
Examples
Triangle begins: ============================================================== n\m | 0 1 2 3 4 ----|--------------------------------------------------------- 0 | 1 1 | 1 10 2 | 1 55 2575 3 | 1 550 253000 250525000 4 | 1 5050 25007500 250025500000 2500000075000000 ...
Links
- María Merino, Rows n=0..32 of triangle, flattened
- M. Merino and I. Unanue, Counting squared grid patterns with Pólya Theory, EKAIA, 34 (2018), 289-316 (in Basque).
Formula
For even n and m: T(n,m) = (10^(m*n) + 3*10^(m*n/2))/4;
for even n and odd m: T(n,m) = (10^(m*n) + 10^((m*n+n)/2) + 2*10^(m*n/2))/4;
for odd n and even m: T(n,m) = (10^(m*n) + 10^((m*n+m)/2) + 2*10^(m*n/2))/4;
for odd n and m: T(n,m) = (10^(m*n) + 10^((m*n+n)/2) + 10^((m*n+m)/2) + 10^((m*n+1)/2))/4.
Comments