cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286942 Irregular triangle read by rows: numbers 1 <= k <= (A002110(n) - 1) where gcd(k, A002110(n - 1)) = 1.

Original entry on oeis.org

1, 2, 1, 3, 5, 1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 1, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 77, 79, 83, 89, 91, 97, 101, 103, 107, 109, 113, 119, 121, 127, 131, 133, 137, 139, 143, 149, 151, 157, 161, 163, 167, 169, 173
Offset: 1

Views

Author

Jamie Morken and Michael De Vlieger, May 16 2017

Keywords

Comments

From Michael De Vlieger, May 18 2017: (Start)
Row n of a(n) is the list of numbers 1 <= k <= A002110(n) that are coprime to A002110(n-1).
A286941(n) and A279864(n) are subsets of a(n) such that the terms of the rows of each sequence combined and sorted comprise all the terms of a(n).
Row lengths = A005867(n) + A005867(n-1): {2, 3, 10, 56, 528, 6240, 97920, ...}.
1 is coprime to all n thus delimits the rows of a(n).
The smallest prime q in row n of a(n) is gpf(primorial(n)) = A006530(A002110(n)) = prime(n) by definition of primorial.
The smallest composite x in row n of a(n) is q^2 = A001248(n).
The Kummer number A057588(n) = A002110(n) - 1 is the largest term in row n of a(n). (End)

Examples

			The triangle starts:
1, 2;
1, 3, 5;
1, 5, 7, 11, 13, 17, 19, 23, 25, 29
Example1:
To find row n of the irregular triangle A286942, take a running sum for each value in the irregular triangle row n-1 of A286941 with A002110(n-1) b-1 times, where b is the largest prime factor in A002110(n).
For example to find row 3 of A286942: Take a running sum for both 1 and 5 in row n-1 of A286941 with A002110(3-1)=6, 5-1=4 times, where b is the largest prime factor 5 in A002110(3).
Result:
1 5
7 11
13 17
19 23
25 29
Equal to row 3 of A286942: 1, 5, 7, 11, 13, 17, 19, 23, 25, 29.
Example2:
To find row n of the irregular triangle A279864, multiply each value in row n-1 of A286941 with the largest prime factor b in A002110(n).
Example for n=3: b=5.
1*5=5
5*5=25
Example3:
To find row n of the irregular triangle A286941, remove the values that are in row n of the irregular triangle A279864 from the values that are in row n of the irregular triangle A286942.
For n=3.
A286942 row n = 1, 5, 7, 11, 13, 17, 19, 23, 25, 29.
A279864 row n = 5, 25.
Removing values 5, 25 from the values in A286942 row n gives row n of A286941: 1, 7, 11, 13, 17, 19, 23, 29.
		

Crossrefs

Programs

  • Mathematica
    Table[Select[Range@ #2, Function[k, CoprimeQ[k, #1]]] & @@ Map[Times @@ # &, {Most@ #, #}] &@ Prime@ Range@ n, {n, 4}] // Flatten (* Michael De Vlieger, May 18 2017 *)

Formula

a(n) = union(A286941(n), A279864(n)) where n consists of all terms in row n of each sequence. - Michael De Vlieger, May 18 2017

Extensions

More terms from Michael De Vlieger, May 18 2017