This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A286945 #19 Feb 16 2025 08:33:45 %S A286945 1,2,5,11,24,51,109,234,503,1081,2322,4987,10711,23006,49415,106139, %T A286945 227976,489669,1051759,2259072,4852259,10422163,22385754,48082339, %U A286945 103276009,221826440,476460797,1023389687,2198137722,4721377893,10141043023,21781936530 %N A286945 Number of maximal matchings in the ladder graph P_2 X P_n. %H A286945 Andrew Howroyd, <a href="/A286945/b286945.txt">Table of n, a(n) for n = 1..500</a> %H A286945 Svenja Huntemann, Neil A. McKay, <a href="https://arxiv.org/abs/1909.12419">Counting Domineering Positions</a>, arXiv:1909.12419 [math.CO], 2019. %H A286945 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LadderGraph.html">Ladder Graph</a> %H A286945 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Matching.html">Matching</a> %H A286945 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MaximalIndependentEdgeSet.html">Maximal Independent Edge Set</a> %H A286945 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,0,1,1). %F A286945 a(n) = 2*a(n-1) + a(n-4) + a(n-5) for n>5. %F A286945 G.f.: x*(1+x^2+x^3+x^4)/((1-x+x^2)*(1-x-2*x^2-x^3)). %p A286945 seq(coeff(series(x*(1+x^2+x^3+x^4)/(1-2*x-x^4-x^5), x, n+1), x, n), n = 1..35); # _G. C. Greubel_, Dec 30 2019 %t A286945 Table[3Cos[nPi/3]/13 - 5Sin[nPi/3]/(13 Sqrt[3]) + RootSum[-1 -2# -#^2 +#^3 &, (-6 -72# +80#^2) #^n &]/403, {n, 35}] (* _Eric W. Weisstein_, Jul 13 2017 *) %t A286945 LinearRecurrence[{2,0,0,1,1}, {1,2,5,11,24}, 35] (* _Eric W. Weisstein_, Jul 13 2017 *) %t A286945 CoefficientList[Series[(1+x^2+x^3+x^4)/(1-2x-x^4-x^5), {x, 0, 35}], x] (* _Eric W. Weisstein_, Jul 13 2017 *) %o A286945 (PARI) Vec((1+x^2+x^3+x^4)/((1-x+x^2)*(1-x-2*x^2-x^3)) + O(x^35)) %o A286945 (Magma) R<x>:=PowerSeriesRing(Integers(), 35); Coefficients(R!( x*(1+x^2+x^3+x^4)/(1-2*x-x^4-x^5) )); // _G. C. Greubel_, Dec 30 2019 %o A286945 (Sage) %o A286945 def A286945_list(prec): %o A286945 P.<x> = PowerSeriesRing(ZZ, prec) %o A286945 return P( x*(1+x^2+x^3+x^4)/(1-2*x-x^4-x^5) ).list() %o A286945 a=A286945_list(35); a[1:] # _G. C. Greubel_, Dec 30 2019 %o A286945 (GAP) a:=[1,2,5,11,24];; for n in [6..35] do a[n]:=2*a[n-1]+a[n-4]+a[n-5]; od; a; # _G. C. Greubel_, Dec 30 2019 %Y A286945 Cf. A284703, A284710, A286911. %K A286945 nonn %O A286945 1,2 %A A286945 _Andrew Howroyd_, May 16 2017