A286998 0-limiting word of the morphism 0->10, 1->20, 2->0.
0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0
Offset: 1
Examples
3rd iterate: 0102010 6th iterate: 01020101020100102010201001020101020100102010
Links
- Jiri Hladky, Table of n, a(n) for n = 1..20000 (terms 1..10000 from Clark Kimberling).
- L. Balková, M. Bucci, A. De Luca, J. Hladký, and S. Puzynina: Aperiodic Pseudorandom Number Generators Based on Infinite Words, Theoret. Comput. Sci. 647 (2016), 85-100.
- Julien Cassaigne, Sebastien Ferenczi, and Luca Q. Zamboni, Imbalances in Arnoux-Rauzy sequences, Annales de l'institut Fourier, 50 (2000), 1265-1276.
- D. Damanik and L. Q. Zamboni, Arnoux-Rauzy subshifts: linear recurrence, powers and palindromes, arXiv:math/0208137 [math.CO], 2002.
- J. Patera, GENERATING THE FIBONACCI CHAIN IN O (log n) SPACE AND O (n) TIME (2003)
- Gérard Rauzy, Nombres algébriques et substitutions, Bull. Soc. Math. France 110.2 (1982): 147-178.
- Wikipedia, Rauzy fractal
- Index entries for sequences that are fixed points of mappings
Programs
-
Mathematica
s = Nest[Flatten[# /. {0 -> {1, 0}, 1 -> {2, 0}, 2 -> 0}] &, {0}, 9] (* A286998 *) Flatten[Position[s, 0]] (* A286999 *) Flatten[Position[s, 1]] (* A287000 *) Flatten[Position[s, 2]] (* A287001 *) (* Using the 0->0102010, 1->102010, 2->2010 rule: *) Nest[ Flatten[# /. {0 -> {0, 1, 0, 2, 0, 1, 0}, 1 -> {1, 0, 2, 0, 1, 0}, 2 -> {2, 0, 1, 0}}] &, {0}, 3]
Comments