This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A287022 #32 Mar 23 2025 18:44:44 %S A287022 1,1,1,1,1,1,1,1,180,11358,1,1,2520,1872000,1009008000,1,1,56712, %T A287022 189197280,814774020480,4058338214422800,1,360,1871640,34306401600, %U A287022 811667639890800,22208161516294279680,667544434159390230643200 %N A287022 Triangle read by rows: T(n,m) is the number of inequivalent n X m matrices under action of the Klein group, with a sixth of 1s, 2s, 3s, 4s, 5s and 6s (ordered occurrences rounded up/down if n*m != 0 mod 6). %C A287022 Computed using Polya's enumeration theorem for coloring. %H A287022 María Merino, <a href="/A287022/b287022.txt">Rows n=0..37 of triangle, flattened</a> %H A287022 M. Merino and I. Unanue, <a href="https://doi.org/10.1387/ekaia.17851">Counting squared grid patterns with Pólya Theory</a>, EKAIA, 34 (2018), 289-316 (in Basque). %F A287022 G.f.: g(x1,x2,x3,x4,x5,x6)=(y1^(m*n) + 3*y2^(m*n/2))/4 for even n and m; %F A287022 (y1^(m*n) + y1^n*y2^((m*n-m)/2) + 2*y2^(m*n/2))/4 for odd n and even m; %F A287022 (y1^(m*n) + y1^m*y2^((m*n-n)/2) + 2*y2^(m*n/2))/4 for even n and odd m; where coefficient correspond to y1=Sum_{i=1..6} x_i, y2=Sum_{i=1..6} x_i^2, and occurrences of numbers are ceiling(m*n/6) for the first k numbers and floor(m*n/6) for the last (6-k) numbers, if m*n = k mod 6. %e A287022 For n=3 and m=2 the T(3,2)=180 solutions are colorings of 3 X 2 matrices in 6 colors inequivalent under the action of the Klein group with exactly 1 occurrence of each color (coefficient of x1^1 x2^1 x3^1 x4^1 x5^1 x6^1). %e A287022 Triangle begins: %e A287022 ============================================================ %e A287022 n\m | 0 1 2 3 4 5 %e A287022 ----|------------------------------------------------------- %e A287022 0 | 1 %e A287022 1 | 1 1 %e A287022 2 | 1 1 1 %e A287022 3 | 1 1 180 11358 %e A287022 4 | 1 1 2520 1872000 1009008000 %e A287022 5 | 1 1 56712 189197280 814774020480 4058338214422800 %Y A287022 Cf. A283435, A286892, A287020, A287021. %K A287022 nonn,tabl %O A287022 0,9 %A A287022 _María Merino_, Imanol Unanue, May 18 2017