This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A287024 #26 Feb 16 2025 08:33:46 %S A287024 1,1,1,1,2,1,1,3,6,1,1,4,15,13,1,1,5,30,82,37,1,1,6,51,301,578,106,1, %T A287024 1,7,80,842,4985,6021,409,1,1,8,117,1995,27107,142276,101267,1896,1,1, %U A287024 9,164,4210,112225,1724440,7269487,2882460,12171,1,1,10,221,8165,388547,13893557,210799447,655015612,138787233,105070,1 %N A287024 Triangle read by rows: T(n,k) is the number of graphs with n vertices with vertex cover number k-1. %C A287024 Aside from trailing 1's, same as A115196. %H A287024 Andrew Howroyd, <a href="/A287024/b287024.txt">Table of n, a(n) for n = 1..91</a> (first 13 rows, after Brendan McKay data in A263341) %H A287024 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/VertexCover.html">Vertex Cover</a> %H A287024 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/VertexCoverNumber.html">Vertex Cover Number</a> %e A287024 Triangle begins: %e A287024 1; %e A287024 1, 1; %e A287024 1, 2, 1; %e A287024 1, 3, 6, 1; %e A287024 1, 4, 15, 13, 1; %e A287024 1, 5, 30, 82, 37, 1; %e A287024 1, 6, 51, 301, 578, 106, 1; %e A287024 1, 7, 80, 842, 4985, 6021, 409, 1; %e A287024 1, 8, 117, 1995, 27107, 142276, 101267, 1896, 1; %e A287024 1, 9, 164, 4210, 112225, 1724440, 7269487, 2882460, 12171, 1; %e A287024 ... %e A287024 Row 3 is 1, 2, 1 because %e A287024 \bar K_3 (1 graph) has vertex cover number 0 %e A287024 K_1\cup K_2 and P_3 (2 graphs) have vertex cover number 1 %e A287024 K_3=C_3 (1 graph) has vertex cover number 2 %e A287024 Here, \bar denotes graph complementation and \cup denotes (disjoint) graph union. %Y A287024 Cf. A000088 (row sums), A115196 (number of graphs on n nodes with clique number k), A263341. %K A287024 nonn,tabl %O A287024 1,5 %A A287024 _Eric W. Weisstein_, May 18 2017 %E A287024 Terms a(46) and beyond from _Brendan McKay_ added by _Andrew Howroyd_, Feb 19 2020