This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A287030 #25 Oct 25 2018 08:14:50 %S A287030 0,0,1,1,1,2,1,1,3,5,3,9,17,6,2,30,41,26,10,81,131,111,30,5,242,491, %T A287030 357,134,35,838,1625,1274,652,140,14,2799,5497,5202,2556,676,126,9365, %U A287030 20581,19827,10200,3610,630,42,33616,76561,74797,44880,16390,3334,462,122937,282591,301188,190278,72490,19218,2772,132,449698,1089375,1219920,788654,341770,97890,16108,1716,1696724,4285737,4893603,3398950,1578577,474838,99386,12012,429 %N A287030 Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section. %C A287030 Row n contains floor((n+3)/2) terms. %H A287030 Gheorghe Coserea, <a href="/A287030/b287030.txt">Rows n=0..200, flattened</a> %H A287030 Pierre Lescanne, <a href="https://arxiv.org/abs/1702.03085">Quantitative aspects of linear and affine closed lambda terms</a>, arXiv:1702.03085 [cs.DM], 2017. %F A287030 y(x;t) = Sum_{n>=0} P_n(t)*x^n satisfies y = t*x + x*y^2 + x*deriv(y,t) + x*y, with y(0;t)=0, where P_n(t) = Sum_{k=0..floor((n+1)/2)} T(n,k)*t^k. %F A287030 A281270(n)=T(n,0), A000108(n)=T(2*n+1,n+1), A001700(n-1)=T(2*n,n). %e A287030 A(x;t) = t*x + (1 + t)*x^2 + (2 + t + t^2)*x^3 + (3 + 5*t + 3*t^2)*x^4 + (9 + 17*t + 6*t^2 + 2*t^3)*x^5 + ... %e A287030 Triangle starts: %e A287030 n\k [0] [1] [2] [3] [4] [5] [6] [7] %e A287030 [0] 0; %e A287030 [1] 0, 1; %e A287030 [2] 1, 1; %e A287030 [3] 2, 1, 1; %e A287030 [4] 3, 5, 3; %e A287030 [5] 9, 17, 6, 2; %e A287030 [6] 30, 41, 26, 10; %e A287030 [7] 81, 131, 111, 30, 5; %e A287030 [8] 242, 491, 357, 134, 35; %e A287030 [9] 838, 1625, 1274, 652, 140, 14; %e A287030 [10] 2799, 5497, 5202, 2556, 676, 126; %e A287030 [11] 9365, 20581, 19827, 10200, 3610, 630, 42; %e A287030 [12] 33616, 76561, 74797, 44880, 16390, 3334, 462; %e A287030 [13] 122937, 282591, 301188, 190278, 72490, 19218, 2772, 132; %e A287030 [14] 449698, 1089375, 1219920, 788654, 341770, 97890, 16108, 1716; %e A287030 [15] ... %t A287030 max = 15; y[_, _] = 0; %t A287030 Do[y[x_, t_] = Series[t x + x y[x, t]^2 + x D[y[x, t], t] + x y[x, t], {x, 0, max}, {t, 0, max}] // Normal, max]; %t A287030 CoefficientList[#, t]& /@ CoefficientList[y[x, t], x] /. {} -> {0} // Flatten (* _Jean-François Alcover_, Oct 25 2018 *) %o A287030 (PARI) %o A287030 A287030_ser(N) = { %o A287030 my(x='x+O('x^N), F0=x, t='t, F1=0, n=1); %o A287030 while(n++, %o A287030 F1 = t*x + x*F0^2 + x*deriv(F0,t) + x*F0; %o A287030 if (F1 == F0, break()); F0 = F1;); F0; %o A287030 }; %o A287030 concat(0, concat(apply(p->Vecrev(p), Vec(A287030_ser(16))))) %o A287030 \\ test: y=A287030_ser(100); y == t*x + x*y^2 + x*deriv(y,t) + x*y %Y A287030 Cf. A262301, A267827, A281270, A287040, A287045. %K A287030 nonn,tabf %O A287030 0,6 %A A287030 _Gheorghe Coserea_, May 23 2017