This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A287076 #14 May 21 2017 07:54:25 %S A287076 2,4,5,6,6,9,10,12,10,12,13,16,14,16,19,20,18,20,21,22,22,24,25,30,26, %T A287076 28,29,30,30,36,33,34,34,36,37,40,38,40,42,42,42,44,45,48,46,48,49,56, %U A287076 50,52,53,56,54,57,57,58,58,60,61,64,62,66,67,66,66,68,69 %N A287076 a(n) = least k > n with the same sum of digits as n in some base b > 1. %C A287076 More formally: a(n) = Min_{b>1} f_b(n), where f_b(n) = least k > n with the same sum of digits as n in base b. %C A287076 We have the following properties: %C A287076 - f_b(b) = b^2 for any b > 1, %C A287076 - f_b(b^k) = b^(k+1) for any b > 1 and k >= 0, %C A287076 - f_b(n) = b + n - 1 for any b > 1 and n < b, %C A287076 - f_b(n) - n >= b - 1 for any b > 1 and n > 0. %C A287076 Also, f_2 = A057168 and f_10 = A228915. %C A287076 For any n > 0, n < a(n) <= 2*n. %C A287076 Conjecturally, a(n) ~ n. %C A287076 The derived sequence e(n) = a(n) - n is unbounded: for any n > 0: %C A287076 - for any b such that 1 < b <= n, let x_b = the least power of b such that f_b(i*x_b) - i*x_b >= n for any i > 0, %C A287076 - let X = Lcm_{b=2..n} x_b, %C A287076 - then f_b(X) - X >= n for any b such that 1 < b <= n, %C A287076 - also, f_b(X) - X >= b - 1 >= n for any b > n, %C A287076 - hence a(X) - X = e(X) >= n, QED. %H A287076 Rémy Sigrist, <a href="/A287076/b287076.txt">Table of n, a(n) for n = 1..10000</a> %H A287076 Rémy Sigrist, <a href="/A287076/a287076.gp.txt">PARI program for A287076</a> %e A287076 The following table shows f_b(8) for all bases b > 1: %e A287076 b f_b(8) 8 in base b f_b(8) in base b %e A287076 -- ------ ----------- ---------------- %e A287076 2 16 "1000" "10000" %e A287076 3 14 "22" "112" %e A287076 4 17 "20" "101" %e A287076 5 12 "13" "22" %e A287076 6 13 "12" "21" %e A287076 7 14 "11" "20" %e A287076 8 64 "10" "100" %e A287076 b>8 b+7 "8" "17" %e A287076 Hence, a(8) = f_5(8) = 12. %Y A287076 Cf. A057168, A228915. %K A287076 nonn,base %O A287076 1,1 %A A287076 _Rémy Sigrist_, May 19 2017