This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A287091 #12 Sep 19 2017 05:43:24 %S A287091 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2, %T A287091 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3, %U A287091 3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5 %N A287091 Expansion of Product_{k>=1} 1/(1 - x^((2*k-1)^3)). %C A287091 Number of partitions of n into odd cubes. %C A287091 In general, if m > 0 and g.f. = Product_{k>=1} 1/(1 - x^((2*k-1)^m)), then a(n) ~ exp((m+1) * (Gamma(1/m) * Zeta(1+1/m) / (2*m^2))^(m/(m+1)) * n^(1/(m+1))) * (Gamma(1/m) * Zeta(1+1/m))^(m/(2*(m+1))) / (sqrt(Pi*(m+1)) * 2^((1+m*(m+3))/(2*(m+1))) * m^((m-1)/(2*(m+1))) * n^((2*m+1)/(2*(m+1)))). - _Vaclav Kotesovec_, Sep 19 2017 %H A287091 Vaclav Kotesovec, <a href="/A287091/b287091.txt">Table of n, a(n) for n = 0..10000</a> %H A287091 <a href="/index/Su#ssq">Index entries for sequences related to sums of cubes</a> %H A287091 <a href="/index/Par#part">Index entries for sequences related to partitions</a> %F A287091 G.f.: Product_{k>=1} 1/(1 - x^((2*k-1)^3)). %F A287091 a(n) ~ exp(2^(5/4) * (Gamma(1/3) * Zeta(4/3))^(3/4) * n^(1/4) / 3^(3/2)) * (Gamma(1/3) * Zeta(4/3)/2)^(3/8) / (8 * 3^(1/4) * sqrt(Pi) * n^(7/8)). - _Vaclav Kotesovec_, Sep 18 2017 %e A287091 a(27) = 2 because we have [27] and [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]. %t A287091 nmax = 110; CoefficientList[Series[Product[1/(1 - x^((2*k-1)^3)), {k, 1, Floor[nmax^(1/3)/2] + 1}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Sep 18 2017 *) %Y A287091 Cf. A000009 (m=1), A167661 (m=2). %Y A287091 Cf. A003108, A016755, A259792, A279329, A280865. %Y A287091 Cf. A001156, A046042, A292547. %K A287091 nonn %O A287091 0,28 %A A287091 _Ilya Gutkovskiy_, May 19 2017