cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A287104 Start with 0 and repeatedly substitute 0->10, 1->12, 2->0.

Original entry on oeis.org

1, 2, 0, 1, 0, 1, 2, 1, 0, 1, 2, 0, 1, 2, 1, 0, 1, 2, 0, 1, 0, 1, 2, 0, 1, 2, 1, 0, 1, 2, 0, 1, 0, 1, 2, 1, 0, 1, 2, 0, 1, 0, 1, 2, 0, 1, 2, 1, 0, 1, 2, 0, 1, 0, 1, 2, 1, 0, 1, 2, 0, 1, 2, 1, 0, 1, 2, 0, 1, 0, 1, 2, 1, 0, 1, 2, 0, 1, 0, 1, 2, 0, 1, 2, 1, 0
Offset: 1

Views

Author

Clark Kimberling, May 21 2017

Keywords

Comments

The fixed point of the morphism 0->10, 1->12, 2->0. Let u be the sequence of positions of 0, and likewise, v for 1 and w for 2. Let U, V, W be the limits of u(n)/n, v(n)/n, w(n)/n, respectively. It appears that 1/U + 1/V + 1/W = 1, where
U = 3.079595623491438786010417...,
V = 2.324717957244746025960908...,
W = U + 1 = 4.079595623491438786010417....
From Michel Dekking, Sep 15 2019: (Start)
The incidence matrix of the morphism sigma: 0->10, 1->12, 2->0 has characteristic polynomial chi(u) = u^3-2u^2+u-1. The real root of chi is lambda := Q/6 + 2/3*1/Q + 2/3, where
Q = ( 100 + 12*sqrt(69) )^1/3.
An eigenvector of lambda is (1, lambda^2-lambda, lambda-1).
The Perron-Frobenius Theorem gives that the asymptotic frequencies f0, f1 and f2 of the letters 0, 1, and 2 are
f0 = 1/lambda^2,
f1 = (lambda^2 - lambda +1)/lambda^3,
f2 = (lambda - 1)/lambda^2.
Algebraic expressions for the constants U,V and W are then given by
U = 1/f0, V = 1/f1, W = 1/f2.
In particular, this shows that W = U + 1.
(End)
Conjecture: if n >=2, then u(n) - u(n-1) is in {2,3,4}, v(n) - v(n-1) is in {2,3}, and w(n) - w(n-1) is in {3,4,5}.
See A287105, A287106, and A287107 for proofs of these conjectures, with explicit expressions for u, v, and w. - Michel Dekking, Sep 15 2019

Crossrefs

Programs

  • Mathematica
    s = Nest[Flatten[# /. {0 -> {1, 0}, 1 -> {1, 2}, 2 -> 0}] &, {0}, 10] (* A287104 *)
    Flatten[Position[s, 0]] (* A287105 *)
    Flatten[Position[s, 1]] (* A287106 *)
    Flatten[Position[s, 2]] (* A287107 *)