cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A287106 Positions of 1 in A287104.

Original entry on oeis.org

1, 4, 6, 8, 10, 13, 15, 17, 20, 22, 25, 27, 29, 32, 34, 36, 38, 41, 43, 46, 48, 50, 53, 55, 57, 59, 62, 64, 66, 69, 71, 73, 75, 78, 80, 83, 85, 87, 90, 92, 94, 96, 99, 101, 103, 106, 108, 111, 113, 115, 118, 120, 122, 124, 127, 129, 131, 134, 136, 138, 140
Offset: 1

Views

Author

Clark Kimberling, May 21 2017

Keywords

Comments

From Michel Dekking, Sep 16 2019: (Start)
Let sigma be the defining morphism in A287104: 0->10, 1->12, 2->0.
Let u := 10, v := 12, w: = 120 be the return words of the word 1. [See Justin & Vuillon (2000) for definition of return word. - N. J. A. Sloane, Sep 23 2019]
Then
sigma(u) = vu, sigma(v) = w, sigma(w) = wu.
If we code w<->0, u<->1, v<->2, then this morphism turns into the morphism
0 -> 01, 1 -> 21, 2 -> 0.
This is exactly the morphism which has A287072 as unique fixed point.
Since u and v have length 2 and w has length 3, this implies that the sequence d of first differences of (a(n)) equals A287072 with the projection 0 -> 3, 1 -> 2, 2 -> 2. This gives the formula below.
(End)

Crossrefs

Cf. A287104, A287105, A287107. Closely related to A287072.

Programs

  • Mathematica
    s = Nest[Flatten[# /. {0 -> {1, 0}, 1 -> {1, 2}, 2 -> 0}] &, {0}, 10] (* A287104 *)
    Flatten[Position[s, 0]] (* A287105 *)
    Flatten[Position[s, 1]] (* A287106 *)
    Flatten[Position[s, 2]] (* A287107 *)

Formula

a(n) = 1 + Sum_{k=1..n-1} d(k), where d(k) = 3 if A287072(k)=0, and d(k) = 2 otherwise, for k = 1,...,n. - Michel Dekking, Sep 16 2019