This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A287142 #23 Feb 18 2025 11:23:50 %S A287142 1,2,6,12,72,60,180,360,420,840,1260,3780,2520,5040,13860,36960,41580, %T A287142 27720,55440,83160,166320,277200,491400,471240,360360,1113840,720720, %U A287142 1081080,3341520,2162160,2827440,5405400,4324320,12972960,6126120,16576560,28274400 %N A287142 Least k such that the number of pairs of consecutive divisors of k equals n. %C A287142 a(n) is even for n > 0. %C A287142 We observe numbers of the decimal form (abcabc) = 360360, 720720 and numbers of the decimal form (abcabc0) = 1081080, 2162160, 5405400, 4324320, 6126120. %C A287142 Observation and questions: many terms are products of powers of a contiguous set of the smallest primes. Many early terms of a(n) are in A002182; e.g., a(35) - A002182(44). The smallest exception outside of the empty product a(0) = 1 is a(22) = 491400 = 2^3 * 3^3 * 5^2 * 7 * 13. In other words, many terms have A006530(a(n)) < A053669(a(n)); a(22) is the smallest exception. Other exceptions include {471240, 1113840, 3341520, 2827440, 16576560, 28274400, ...}. A000720(A053669(a(22))) - A000720(A006530(a(22))) = 1, but the first instance of 2 for this function is a(35) = 16576560. This is evident by mapping A054841 across a(n). Are there a finite number of terms of a(n) that are also in A002182? Are there a finite number of terms of a(n) that have A006530(a(n)) < A053669(a(n)); are they becoming less frequent as n increases? - _Michael De Vlieger_, May 20 2017 %C A287142 In other words, a(n) is the least integer with exactly n divisors that are oblong (A002378). - _Bernard Schott_, Jul 30 2022 %F A287142 a(n) = 2*A130317(n) for n >= 1. - _Bernard Schott_, Jul 30 2022 %e A287142 a(3) = 12 because the divisors of 12 are {1, 2, 3, 4, 6, 12} with three pairs of consecutive divisors (1, 2), (2, 3) and (3, 4). %p A287142 with(numtheory): %p A287142 for n from 0 to 60 do: %p A287142 ii:=0: %p A287142 for k from 1 to 10^8 while(ii=0) do: %p A287142 d0:=divisors(k):n0:=nops(d0):c0:=0: %p A287142 for i from 1 to n0-1 do: %p A287142 if d0[i+1]=d0[i]+1 %p A287142 then %p A287142 c0:=c0+1: %p A287142 else %p A287142 fi: %p A287142 od: %p A287142 if c0=n %p A287142 then %p A287142 ii:=1:printf(ā%d %d \nā,n,k): %p A287142 else %p A287142 fi: %p A287142 od: %p A287142 od: %t A287142 Function[s, Function[t, ReplacePart[t, Map[#1 -> #2 & @@ # &, Transpose@{1 + Keys@ s, Values[s][[All, 1]]}]]]@ ConstantArray[0, Max@ Keys@ s]]@ KeySort@ PositionIndex@ Table[DivisorSum[n, 1 &, Divisible[n, # + 1] &], {n, 2 * 10^6}] (* _Michael De Vlieger_, May 20 2017, Version 10 *) %o A287142 (PARI) isok(n,k) = {dk = divisors(k); ddk = vector(#dk-1, j, dk[j+1] - dk[j]); #select(x->x==1, ddk) == n;} %o A287142 a(n) = {my(k=1); while (!isok(n, k), k++); k;} \\ _Michel Marcus_, May 20 2017 %Y A287142 Cf. A000005, A002378, A027750, A129308, A130317. %Y A287142 Essentially the same as A088726. %K A287142 nonn %O A287142 0,2 %A A287142 _Michel Lagneau_, May 20 2017