cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A287145 Smallest k such that both of the consecutive Woodall numbers A003261(k) and A003261(k+1) are divisible by A014662(n), the n-th prime p with even order of 2 mod p.

Original entry on oeis.org

4, 13, 64, 89, 83, 188, 433, 701, 449, 342, 1429, 1768, 1889, 2276, 3484, 2423, 5149, 5776, 2069, 1693, 8644, 4793, 9728, 11173, 4237, 13364, 15049, 16108, 16469, 9455, 19501, 22364, 25876, 8929, 3131, 6524, 2311, 36313, 13017, 10114, 13582, 43069, 15962
Offset: 1

Views

Author

Amiram Eldar, May 20 2017

Keywords

Comments

Keller proved that the occurrence of 2 consecutive Woodall numbers that are divisible by the same prime is restricted to primes p with even h(p), the order of 2 mod p, and that there are an infinity of such pairs.

Examples

			11 is the 3rd prime p with even order of 2 mod p. A003261(k)=k*2^k-1 is divisible by 11 for k = 16,48,61,64,65,73,79,100,... The first occurrence of 2 consecutive numbers is 64 and 65, thus a(3) = 64.
		

Crossrefs

Programs

  • Mathematica
    a = {}; For[p=0, p<=11699, p++; If[!PrimeQ[p], Continue[]]; h=MultiplicativeOrder[2, p]; If[!EvenQ[h], Continue[]]; n=(h/2+1)*p-2; a = AppendTo[a, n]]; a

Formula

a(n) = (h(p)/2 + 1)*p - 2, where p=A014662(n), and h(p) is the order of 2 modulo p (A014664).