This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A287147 #17 May 19 2022 09:19:54 %S A287147 2,3,7,13,17,31,53,179,271,311,503,569,587,1231,1307,1543,1931,2647, %T A287147 2711,3089,3917,4919,5879,6491,8933,9137,11437,13411,14431,16657, %U A287147 21599,26053,29129,57367,58481,62071,62971,68351,70639,109721,156967,193811,216211 %N A287147 Primes p that set a new record for the size of the smallest b > 1 such that b^(p-1) == 1 (mod p^2). %C A287147 Primes p such that A039678(i) reaches record values, where i is the index of p in A000040. %C A287147 Records of (A185103 restricted to primes). - _Joerg Arndt_, May 29 2017 %t A287147 Function[s, Prime@ Position[s, #][[1, 1]] & /@ Union@ FoldList[Max, s]]@ Table[Function[p, b = 2; While[PowerMod[b, p - 1, p^2] != 1, b++]; b]@ Prime@ n, {n, 10^3}] (* _Michael De Vlieger_, May 21 2017 *) %o A287147 (PARI) minb(n) = my(b=2); while(Mod(b, n^2)^(n-1)!=1, b++); b %o A287147 my(r=0); forprime(p=1, , if(minb(p) > r, print1(p, ", "); r=minb(p))) %o A287147 (Python) %o A287147 from itertools import islice %o A287147 from sympy import nextprime %o A287147 from sympy.ntheory.residue_ntheory import nthroot_mod %o A287147 def A287147_gen(): # generator of terms %o A287147 c, p = 5, 3 %o A287147 yield 2 %o A287147 while True: %o A287147 d = nthroot_mod(1,p-1,p**2,True)[1] %o A287147 if d > c: %o A287147 c = d %o A287147 yield p %o A287147 p = nextprime(p) %o A287147 A287147_list = list(islice(A287147_gen(),15)) # _Chai Wah Wu_, May 18 2022 %Y A287147 Cf. A000040, A039678, A185103, A248865, A278611. %K A287147 nonn %O A287147 1,1 %A A287147 _Felix Fröhlich_, May 20 2017