This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A287164 #4 May 20 2017 21:49:10 %S A287164 2,3,5,11,13,19,37,43,67,163 %N A287164 Primes having a unique partition into three squares. %C A287164 D. H. Lehmer conjectures that there are no more terms (see A094739 and A094942). %H A287164 <a href="/index/Su#ssq">Index entries for sequences related to sums of squares</a> %e A287164 ------------------------------- %e A287164 | n | a(n) | representation | %e A287164 |-----------------------------| %e A287164 | 1 | 2 | 0^2 + 1^2 + 1^2 | %e A287164 | 2 | 3 | 1^2 + 1^2 + 1^2 | %e A287164 | 3 | 5 | 0^2 + 1^2 + 2^2 | %e A287164 | 4 | 11 | 1^2 + 1^2 + 3^2 | %e A287164 | 5 | 13 | 0^2 + 2^2 + 3^2 | %e A287164 | 6 | 19 | 1^2 + 3^2 + 3^2 | %e A287164 | 7 | 37 | 0^2 + 1^2 + 6^2 | %e A287164 | 8 | 43 | 3^2 + 3^2 + 5^2 | %e A287164 | 9 | 67 | 3^2 + 3^2 + 7^2 | %e A287164 | 10 | 163 | 1^2 + 9^2 + 9^2 | %e A287164 ------------------------------- %e A287164 157 is the prime of the form x^2 + y^2 + z^2 with x, y, z >= 0, but is not in the sequence because 157 = 0^2 + 6^2 + 11^2 = 2^2 + 3^2 + 12^2. %t A287164 Select[Range[200], Length[PowersRepresentations[#, 3, 2]] == 1 && PrimeQ[#] &] %Y A287164 Cf. A000164, A000378, A002313, A042998, A094739, A094942. %K A287164 nonn,more %O A287164 1,1 %A A287164 _Ilya Gutkovskiy_, May 20 2017