cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A287168 Number of non-attacking bishop positions on a cylindrical 3 X 2n chessboard.

This page as a plain text file.
%I A287168 #25 May 24 2019 02:02:43
%S A287168 1,16,144,1156,11664,118336,1218816,12574116,129868816,1341610384,
%T A287168 13860823824,143206237476,1479580304400,15286786268224,
%U A287168 157940749232704,1631820172890436,16859722986240016,174192150898142224,1799727414404326416,18594516209802790084
%N A287168 Number of non-attacking bishop positions on a cylindrical 3 X 2n chessboard.
%H A287168 Ray Chandler, <a href="/A287168/b287168.txt">Table of n, a(n) for n = 0..986</a> (terms to 1000 digits)
%H A287168 Richard M. Low and Ardak Kapbasov, <a href="https://www.emis.de/journals/JIS/VOL20/Low/low2.html">Non-Attacking Bishop and King Positions on Regular and Cylindrical Chessboards</a>, Journal of Integer Sequences, Vol. 20 (2017), Article 17.6.1, Table 11.
%H A287168 <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (14, -35, -48, 198, -112, -78, 72, -5, -6, 1).
%F A287168 G.f.: (-1 - 2 x + 45 x^2 + 252 x^3 - 1090 x^4 + 644 x^5 + 802 x^6 - 740 x^7 + 35 x^8 + 86 x^9 - 15 x^10) / (-1 + 14 x - 35 x^2 - 48 x^3 + 198 x^4 - 112 x^5 - 78 x^6 + 72 x^7 - 5 x^8 - 6 x^9 + x^10). [Corrected by _Georg Fischer_, May 23 2019]
%t A287168 CoefficientList[Series[(-1 - 2 x + 45 x^2 + 252 x^3 - 1090 x^4 + 644 x^5 + 802 x^6 - 740 x^7 + 35 x^8 + 86 x^9 - 15 x^10) / (-1 + 14 x - 35 x^2 - 48 x^3 + 198 x^4 - 112 x^5 - 78 x^6 + 72 x^7 - 5 x^8 - 6 x^9 + x^10), {x, 0, 986}], x] (* _Michael De Vlieger_, May 21 2017; simplified by _Georg Fischer_, May 23 2019 *)
%Y A287168 Cf. A286810, A287169.
%K A287168 nonn
%O A287168 0,2
%A A287168 _Richard M. Low_, May 20 2017
%E A287168 More terms from _Michael De Vlieger_, May 21 2017