This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A287198 #73 May 30 2017 22:55:00 %S A287198 4,6,8,9,25,49,52,56,58,65,85,94,116,134,145,158,161,178,187,253,275, %T A287198 295,325,341,358,413,451,514,527,529,532,581,583,589,611,718,752,781, %U A287198 815,817,835,871,895,899,952,958,989,998,1154,1156,1159,1165,1189,1192 %N A287198 Numbers with the property that every cyclic permutation of its digits is a composite number with none of its permutations sharing any common prime factors. %C A287198 Subsequence of A052382, as a number with a zero digit have cyclic permutations of the forms 0x and x0 which share prime factors of x. The only exception to this argument is 10, but 01 is not composite, so 10 is not a member of the sequence as well. - _Chai Wah Wu_, May 24 2017 %C A287198 If m is a multiple of 11 with an even number of digits, then m is not a term. - _Chai Wah Wu_, May 30 2017 %H A287198 Luke Zieroth and Giovanni Resta, <a href="/A287198/b287198.txt">Table of n, a(n) for n = 1..10000</a> (first 212 terms from Luke Zieroth) %e A287198 The numbers formed by cyclic permutations of 134 are 341 and 413. The factors of 134 are 2 and 67, the factors of 341 are 11 and 31, and the factors of 413 are 7 and 59. Since these numbers are all composite and none share any common factors with each other, 134 is included on the list. %t A287198 ok[n_] := Catch@ Block[{t = FromDigits /@ (RotateLeft[IntegerDigits[n], #] & /@ Range[ IntegerLength@ n])}, If[! AllTrue[t, CompositeQ], Throw@False]; Do[ If[ GCD[t[[i]], t[[j]]] > 1, Throw@False], {i, Length@t}, {j, i-1}]; True]; Select[ Range@ 1200, ok] (* _Giovanni Resta_, May 25 2017 *) %o A287198 (PARI) is(n) = {my(d=digits(n), v=vector(#d)); v[1]=n; if(isprime(n)||n==10, return(0)); for(i=2, #d, v[i] = v[i-1]\10; v[i] = v[i]+(v[i-1]-v[i]*10)*10^(#d-1); if(isprime(v[i]), return(0)); for(j=1,i-1,if(gcd(v[j], v[i])>1, return(0)))); n>1} \\ _David A. Corneth_, May 25 2017 %o A287198 (Python) %o A287198 from gmpy2 import is_prime, gcd, mpz %o A287198 A287198_list, n = [], 2 %o A287198 while n <= 10**6: %o A287198 s = str(n) %o A287198 if not is_prime(n) and '0' not in s: %o A287198 k = n %o A287198 for i in range(len(s)-1): %o A287198 s = s[1:]+s[0] %o A287198 m = mpz(s) %o A287198 if is_prime(m) or gcd(k,m) > 1: %o A287198 break %o A287198 k *= m %o A287198 else: %o A287198 A287198_list.append(n) %o A287198 n += 1 # _Chai Wah Wu_, May 27 2017 %Y A287198 Cf. A052382, A068652, A067012. %K A287198 nonn,base %O A287198 1,1 %A A287198 _Luke Zieroth_, May 21 2017