cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A287199 Decimal representation of the diagonal from the origin to the corner of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 259", based on the 5-celled von Neumann neighborhood.

This page as a plain text file.
%I A287199 #13 Feb 16 2025 08:33:46
%S A287199 1,3,4,3,16,15,64,63,256,255,1024,1023,4096,4095,16384,16383,65536,
%T A287199 65535,262144,262143,1048576,1048575,4194304,4194303,16777216,
%U A287199 16777215,67108864,67108863,268435456,268435455,1073741824,1073741823,4294967296,4294967295
%N A287199 Decimal representation of the diagonal from the origin to the corner of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 259", based on the 5-celled von Neumann neighborhood.
%C A287199 Initialized with a single black (ON) cell at stage zero.
%C A287199 Appears to differ from A277800 only at a(1). - _R. J. Mathar_, May 25 2017
%D A287199 S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
%H A287199 Robert Price, <a href="/A287199/b287199.txt">Table of n, a(n) for n = 0..126</a>
%H A287199 Robert Price, <a href="/A287199/a287199.tmp.txt">Diagrams of first 20 stages</a>
%H A287199 N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015
%H A287199 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H A287199 S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>
%H A287199 Wolfram Research, <a href="http://atlas.wolfram.com/">Wolfram Atlas of Simple Programs</a>
%H A287199 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H A287199 <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a>
%H A287199 <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%F A287199 Conjectures from _Colin Barker_, May 25 2017: (Start)
%F A287199 G.f.: (1 + 3*x - x^2 - 12*x^3 + 12*x^5) / ((1 - x)*(1 + x)*(1 - 2*x)*(1 + 2*x)).
%F A287199 a(n) = 2^n for n>1 and even.
%F A287199 a(n) = 2^(n-1) - 1 for n odd.
%F A287199 a(n) = 5*a(n-2) - 4*a(n-4) for n>3.
%F A287199 (End)
%t A287199 CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
%t A287199 code = 259; stages = 128;
%t A287199 rule = IntegerDigits[code, 2, 10];
%t A287199 g = 2 * stages + 1; (* Maximum size of grid *)
%t A287199 a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
%t A287199 ca = a;
%t A287199 ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
%t A287199 PrependTo[ca, a];
%t A287199 (* Trim full grid to reflect growth by one cell at each stage *)
%t A287199 k = (Length[ca[[1]]] + 1)/2;
%t A287199 ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
%t A287199 Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]
%Y A287199 Cf. A287194, A287196, A287197.
%K A287199 nonn,easy
%O A287199 0,2
%A A287199 _Robert Price_, May 21 2017