This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A287214 #35 Dec 27 2018 20:43:17 %S A287214 1,1,1,1,1,1,1,1,2,1,1,1,2,4,1,1,1,2,5,8,1,1,1,2,5,13,16,1,1,1,2,5,15, %T A287214 34,32,1,1,1,2,5,15,47,89,64,1,1,1,2,5,15,52,150,233,128,1,1,1,2,5,15, %U A287214 52,188,481,610,256,1,1,1,2,5,15,52,203,696,1545,1597,512,1 %N A287214 Number A(n,k) of set partitions of [n] such that for each block all absolute differences between consecutive elements are <= k; square array A(n,k), n>=0, k>=0, read by antidiagonals. %C A287214 The sequence of column k satisfies a linear recurrence with constant coefficients of order 2^(k-1) for k>0. %H A287214 Alois P. Heinz, <a href="/A287214/b287214.txt">Antidiagonals n = 0..45, flattened</a> %H A287214 Pierpaolo Natalini, Paolo Emilio Ricci, <a href="https://doi.org/10.3390/axioms7040071">New Bell-Sheffer Polynomial Sets</a>, Axioms 2018, 7(4), 71. %H A287214 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a> %F A287214 A(n,k) = Sum_{j=0..k} A287213(n,j). %e A287214 A(4,0) = 1: 1|2|3|4. %e A287214 A(4,1) = 8: 1234, 123|4, 12|34, 12|3|4, 1|234, 1|23|4, 1|2|34, 1|2|3|4. %e A287214 A(4,2) = 13: 1234, 123|4, 124|3, 12|34, 12|3|4, 134|2, 13|24, 13|2|4, 1|234, 1|23|4, 1|24|3, 1|2|34, 1|2|3|4. %e A287214 Square array A(n,k) begins: %e A287214 1, 1, 1, 1, 1, 1, 1, 1, ... %e A287214 1, 1, 1, 1, 1, 1, 1, 1, ... %e A287214 1, 2, 2, 2, 2, 2, 2, 2, ... %e A287214 1, 4, 5, 5, 5, 5, 5, 5, ... %e A287214 1, 8, 13, 15, 15, 15, 15, 15, ... %e A287214 1, 16, 34, 47, 52, 52, 52, 52, ... %e A287214 1, 32, 89, 150, 188, 203, 203, 203, ... %e A287214 1, 64, 233, 481, 696, 825, 877, 877, ... %p A287214 b:= proc(n, k, l) option remember; `if`(n=0, 1, b(n-1, k, map(x-> %p A287214 `if`(x-n>=k, [][], x), [l[], n]))+add(b(n-1, k, sort(map(x-> %p A287214 `if`(x-n>=k, [][], x), subsop(j=n, l)))), j=1..nops(l))) %p A287214 end: %p A287214 A:= (n, k)-> b(n, min(k, n-1), []): %p A287214 seq(seq(A(n, d-n), n=0..d), d=0..12); %t A287214 b[0, _, _] = 1; b[n_, k_, l_List] := b[n, k, l] = b[n - 1, k, If[# - n >= k, Nothing, #]& /@ Append[l, n]] + Sum[b[n - 1, k, Sort[If[# - n >= k, Nothing, #]& /@ ReplacePart[l, j -> n]]], {j, 1, Length[l]}]; %t A287214 A[n_, k_] := b[n, Min[k, n - 1], {}]; %t A287214 Table[A[n, d - n], {d, 0, 12}, {n, 0, d}] // Flatten (* _Jean-François Alcover_, Apr 30 2018, after _Alois P. Heinz_ *) %Y A287214 Columns k=0-10 give: A000012, A011782, A001519, A287275, A287276, A287277, A287278, A287279, A287280, A287281, A287282. %Y A287214 Main diagonal gives A000110. %Y A287214 Cf. A287213, A287216, A287417, A287641. %K A287214 nonn,tabl %O A287214 0,9 %A A287214 _Alois P. Heinz_, May 21 2017