cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A287246 Numbers whose sum of proper divisors is equal to 57939481594.

This page as a plain text file.
%I A287246 #8 Jun 02 2025 12:22:12
%S A287246 77753398058,94151657522,98497118618,105654348614,107396027126,
%T A287246 107978124554,112402593722,112536300194,113395841738,113591877506,
%U A287246 113834039318,113903752562,114541896698,114637401218,114663447902,114856499738,115175241854,115246892846,115271202986
%N A287246 Numbers whose sum of proper divisors is equal to 57939481594.
%C A287246 The number 57939481594 is the 44th element of A283157. That is, no even number below it has more preimages under the sum-of-proper-divisors function.
%C A287246 There are exactly 94 elements in the sequence.
%C A287246 In 2016, C. Pomerance proved that, for every e>0, the number of preimages is O_e(n^{2/3+e}).
%C A287246 Conjecture: there exists a positive real number k such that the number of preimages of an even number n is O((log n)^k).
%H A287246 Anton Mosunov, <a href="/A287246/b287246.txt">Table of n, a(n) for n = 1..94</a>
%H A287246 C. Pomerance, <a href="https://math.dartmouth.edu/~carlp/aliquot.pdf">The first function and its iterates</a>, A Celebration of the Work of R. L. Graham, S. Butler, J. Cooper, and G. Hurlbert, eds., Cambridge U. Press, to appear.
%e A287246 a(1) = 77753398058, because it is the smallest number whose sum of proper divisors is equal to 57939481594: 1 + 2 + 7 + 14 + 49 + 98 + 6793 + 13586 47551 + 95102 + 116797 + 233594 + 332857 + 665714 + 817579 + 1635158 + 5723053 + 11446106 + 793402021 + 1586804042 + 5553814147 + 11107628294 + 38876699029 = 57939481594.
%Y A287246 Cf. A001065, A283156, A283157, A287233, A287238, A287247, A287251, A287262.
%K A287246 fini,full,nonn
%O A287246 1,1
%A A287246 _Anton Mosunov_, May 22 2017