cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A287247 Numbers whose sum of proper divisors is equal to 289697407994.

This page as a plain text file.
%I A287247 #9 May 22 2017 12:11:35
%S A287247 300629385430,331082751976,348602203870,539890623754,552235683634,
%T A287247 556381352806,556523967562,557844696646,562012970938,569170200598,
%U A287247 569518766962,573004430386,574282506778,575462269366,576199620754,577107726658,577305647026,577419601138
%N A287247 Numbers whose sum of proper divisors is equal to 289697407994.
%C A287247 The number 289697407994 is the 47th element of A283157. That is, no even number below it has more preimages under the sum-of-proper-divisors function.
%C A287247 There are exactly 123 elements in the sequence.
%C A287247 In 2016, C. Pomerance proved that, for every e>0, the number of preimages is O_e(n^{2/3+e}).
%C A287247 Conjecture: there exists a positive real number k such that the number of preimages of an even number n is O((log n)^k).
%H A287247 Anton Mosunov, <a href="/A287247/b287247.txt">Table of n, a(n) for n = 1..123</a>
%H A287247 C. Pomerance, <a href="https://math.dartmouth.edu/~carlp/aliquot.pdf">The first function and its iterates</a>, A Celebration of the Work of R. L. Graham, S. Butler, J. Cooper, and G. Hurlbert, eds., Cambridge U. Press, to appear.
%e A287247 a(1) = 300629385430, because it is the smallest number whose sum of proper divisors is equal to 289697407994: 1 + 2 + 5 + 10 + 11 + 22 + 55 + 110 + 2732994413 + 5465988826 + 13664972065 + 27329944130 + 30062938543 + 60125877086 + 150314692715 = 289697407994.
%Y A287247 Cf. A001065, A283156, A283157, A287233, A287238, A287251, A287262.
%K A287247 fini,full,nonn
%O A287247 1,1
%A A287247 _Anton Mosunov_, May 22 2017