cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A287271 a(n) is the number of zeros of the Bernoulli B(n, x) polynomial in the open interval (-1, +1).

This page as a plain text file.
%I A287271 #27 Feb 16 2025 08:33:46
%S A287271 0,1,2,2,3,3,2,2,3,3,4,4,3,3,4,4,5,3,4,4,4,3,4,4,4,3,4,4,4,3,4,4,4,3,
%T A287271 4,4,4,3,4,4,4,3,4,4,4,3,4,4,4,3,4,4,4,3,4,4,4,3,4,4,4,3,4,4,4,3,4,4,
%U A287271 4,3,4,4,4,3,4,4,4,3,4,4,4,3,4,4,4,3,4
%N A287271 a(n) is the number of zeros of the Bernoulli B(n, x) polynomial in the open interval (-1, +1).
%C A287271 The n-th Bernoulli polynomial is defined by the exponential generating function: t*exp(x*t)/(exp(t)-1) = Sum_{n>=0} bernoulli(n,x)/n!*t^n.
%C A287271 The first few Bernoulli polynomials are:
%C A287271 B(0,x) = 1
%C A287271 B(1,x) = x - 1/2
%C A287271 B(2,x) = x^2 - x + 1/6
%C A287271 B(3,x) = x^3 - 3/2 x^2 + 1/2 x
%C A287271 B(4,x) = x^4 - 2x^3 + x^2 - 1/30
%C A287271 Conjecture 1: for n > 32, a(n) = 3 for n odd and a(n) = 4 otherwise.
%C A287271 Conjecture 2: A284849(n) - a(n) > 0 if n = 6, 7,...,15 and n = 17.
%C A287271 Conjecture 1 is false.  It appears that for n => 13, a(n) = 3 for n == 1 (mod 4) and a(n) = 4 otherwise. - _Robert Israel_, May 29 2017
%H A287271 A. P. Veselov and J. P. Ward, <a href="https://doi.org/10.1016/j.jmaa.2004.12.046">On the real zeros of the Hurwitz zeta-function and Bernoulli polynomials</a>, Journal of Mathematical Analysis and Applications 305 (2005), 712-721.
%H A287271 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BernoulliPolynomial.html">Bernoulli Polynomial</a>
%F A287271 Conjectures from _Colin Barker_, Jan 22 2020: (Start)
%F A287271 G.f.: x*(1 + 2*x + 2*x^2 + 3*x^3 + 2*x^4 + 2*x^9 + 2*x^10 + 2*x^15 - x^19) / ((1 - x)*(1 + x)*(1 + x^2)).
%F A287271 a(n) = a(n-4) for n>16.
%F A287271 (End)
%e A287271 a(6) = 2 because the zeros of B(6,x) = x^6 - 3x^5 + 5/2 x^4 - 1/2 x^2 + 1/42 are:
%e A287271 x1 = -0.2728865...-0.06497293...*i,
%e A287271 x2 = -0.2728865...+0.06497293...*i,
%e A287271 x3 =  0.2475407...,
%e A287271 x4 =  0.7524592...,
%e A287271 x5 =  1.272886...-.06497293...*i,
%e A287271 x6 =  1.272886...+.06497293...*i
%e A287271 with two roots x3 and x4 in the open interval (-1, +1).
%p A287271 f:= proc(n) sturm(sturmseq(bernoulli(n,x),x),x,-1,1) - `if`(n::odd and n > 1, 1, 0) end proc:
%p A287271 map(f, [$0..100]); # _Robert Israel_, May 29 2017
%t A287271 a[n_] := NSolve[-1 < x < 1 && BernoulliB[n, x] == 0, x, Reals, WorkingPrecision -> 100] // Length;
%t A287271 a /@ Range[0, 100] (* _Jean-François Alcover_, Oct 26 2020 *)
%Y A287271 Cf. A284849.
%K A287271 nonn
%O A287271 0,3
%A A287271 _Michel Lagneau_, May 22 2017
%E A287271 Corrected by _Robert Israel_, May 29 2017