cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A287272 a(n) is the number of zeros of the Laguerre L(n, x) polynomial in the open interval (-1, +1).

This page as a plain text file.
%I A287272 #9 Feb 16 2025 08:33:46
%S A287272 0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
%T A287272 3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,
%U A287272 5,5,5,5,5,5,5,5,5,5,5,5,5,5
%N A287272 a(n) is the number of zeros of the Laguerre L(n, x) polynomial in the open interval (-1, +1).
%C A287272 The Laguerre polynomials are given by the sum: L(n,x) = Sum_{k=0..n} ((-1)^k)/k!*binomial(n,k)*x^k.
%C A287272 The first few Laguerre polynomials are:
%C A287272 L(0,x) =   1,
%C A287272 L(1,x) =  -x + 1,
%C A287272 L(2,x) = ( x^2 - 4*x + 2)/2,
%C A287272 L(3,x) = (-x^3 + 9*x^2 - 18*x + 6)/6,
%C A287272 L(4,x) = ( x^4 - 16*x^3 + 72*x^2 - 96*x + 24)/24,
%C A287272 L(5,x) = (-x^5 + 25*x^4 - 200*x^3 + 600*x^2 - 600*x + 120)/120.
%C A287272 The number of occurrences a(n) = 0, 1, 2,.. is given by the sequence {2, 6, 11, 16, 21, ...}.
%H A287272 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LaguerrePolynomial.html">The World of Mathematics: Laguerre Polynomial</a>
%e A287272 a(3) = 1 because the zeros of L(3,x) = (-x^3 + 9*x^2 - 18*x + 6)/6 are x1=.4157745568..., x2=2.294280360... and x3=6.289945083... with the root x1 in the open interval (-1, +1). Hence, a(3) = 1.
%p A287272 for n from 0 to 90 do:it:=0:
%p A287272 y:=[fsolve(expand(LaguerreL(n,x)),x,real)]:for m from 1 to nops(y) do:if abs(y[m])<1 then it:=it+1:else fi:od: printf(`%d, `, it):od:
%Y A287272 Cf. A066667.
%K A287272 nonn
%O A287272 0,9
%A A287272 _Michel Lagneau_, May 22 2017