A287300 Primes that can be generated by the concatenation in base 3, in ascending order, of two consecutive integers read in base 10.
5, 31, 41, 61, 71, 281, 337, 421, 449, 617, 673, 701, 2297, 2543, 2707, 2789, 2953, 3527, 3691, 4019, 5003, 5167, 5413, 5659, 5741, 5987, 6151, 6397, 21961, 22937, 23669, 24889, 25621, 26597, 27329, 27817, 28549, 28793, 30013, 31477, 31721, 32941, 34649, 35381
Offset: 1
Examples
1 and 2 in base 3 are 1 and 2 and concat(1,2) = 12 in base 10 is 5; 3 and 4 in base 3 are 10 and 11 and concat(10,11) = 1011 in base 10 is 31.
Programs
-
Maple
with(numtheory): P:= proc(q,h) local a,b,c,d,k,n; a:=convert(q+1,base,h); b:=convert(q,base,h); c:=[op(a),op(b)]; d:=0; for k from nops(c) by -1 to 1 do d:=h*d+c[k]; od; if isprime(d) then d; fi; end: seq(P(i,3),i=1..1000);
-
Mathematica
With[{b = 3}, Select[Map[FromDigits[Flatten@ IntegerDigits[#, b], b] &, Partition[Range@ 150, 2, 1]], PrimeQ]] (* Michael De Vlieger, May 23 2017 *)